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CHAPTER I. INTRODUCTION 

As stated by Markly Roberts in his speech (1957), 

Productivity improvement is not an end in itself. It is a means to an 
end. In fact it is a means to achieve a variety of social as well as 
economic goals. Economic goals and economic efficiency are by no 
means the only goals of any society, and it would be wrong to aJlow 
such goals, important though they may be, to be exclusive or overriding 
goals of a society. 

Some major goals of a developing society, as well as a developed society contingent 

upon growth of productivity, are: 

1. maximum freedom and dignity, 

2. full employment, 

3. sufficient and equal distribution of income, 

4. adequate shelter and food, 

5. good health and decent environment, 

6. equal opportunity and enjoyable life, 

7. democratic structure of society, industry, and community. 

All of these above mentioned factors contribute to a better quality of life and standard 

of living which are achieved by the process of industrialization, with the net result of 

growth in productivity. 

Throughout the world, it is believed that a better standard of living can only be 

achieved through the process of industrialization. The United Nations study of industrial 

growth states that industry is in itself a highly dynamic activity. The income per person 

engaged in industry is normally substantially higher than in agriculture. Also, it tends to 

exercise a dynamic impact on other sectors of a country's economy. 
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Among many factors, such as political, social, environmental and economical, which 

influence the process of industrialization, economical consideration is a top priority of 

any country, to be addressed properly and with positive approach. 

From the cluster of economical considerations for industrialization and industrial 

growth, one aspect (and maybe most important) is to evaluate the performance of 

industry. Industrial performance is based on an input/output relationship of complex 

nature. A direct result of industrial performance is reflected in the standard of living of a 

particular country. A higher performance industry has full capacity utilization and is 

more productive with better employment and better living opportunity, as compared to 

one with low performance. To evaluate the performance improvements based on 

productive capacity of the industry, it is imperative to analyze the growth of industrial 

productivity. It is usually believed that the level of productivity growth of developing 

countries is low when compared to developed countries, but it is not yet completely 

known what the actual differences are, how they are caused, and the way to monitor them 

most effectively. It is believed that the causation of productivity level is the direct result 

of factors such as: 

(a) Optimal choice of technology, 

(b) Capital/Labor employed for cost/effectiveness, 

(c) The type and level of technical and managerial (organizational) know-how, and 

(d) Timing of implementation. 

Pakistan is a developing country with a lesser developed economy and lower standard 

of living compared to the other industrialized and emerging industrialized countries. The 
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process of economic development or growtii requires a set of institutions, attitudes and 

incentives tiiat will assure continuity of growth. High annual rates of savings, continued 

improvements in methods of production, a steady provision of managerial, personnel and 

technical skills and a streamlined administrative organization make economic growth a 

quasi-automatic process. 

To raise the standard of living, three factors which account for developmental trends 

and activities must be explored. These factors are: 

1. technological, 

2. economic, and 

3. social. 

The net effect of these factors is to reduce the cost of creating real wealth of the 

country. As the industrial sector is supposed to be a major contributor to the country's 

wealth, the analysis of its performance over a whole time period and/or at a specific point 

in time is of paramount importance for planners and policy makers. The living standard 

and the quality of life is directly proportional to the general economic well-being in one's 

country. Reduction in the cost of manufacturing and raising the productivity of 

manufacturing industries are the top priorities of every country in the world. 

Changes in productivity are basically related to the following factors: 

(a) Capital and/or equipment, 

(b) Labor, 

(c) Implementive capability/Technical know-how/Technical stock of knowledge, 

(d) Organizational and managerial awareness. 
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(e) Size and scale economics, 

(f) Optimal lot size and inventory policy, 

(g) Interindustry shifts and quality of resources, and 

(h) Availability of domestic resources. 

Capital and/or Equipment 

This factor determines how much capital is invested and in what form or capacity. Is 

it an effective investment or not; is there any need for addition, and if there is how it will 

be financed, i.e., by borrowing, by retained earnings or by new stock issue. In the case 

of equipment, is it running over/under capacity, is the equipment what is needed for 

prudent operation, do the operating conditions and maintenance schedules accord with the 

manufacturer specifications? Productivity will be affected positively with efficient 

employment of factors; otherwise it will decline. 

Labor 

Labor productivity is based upon the following: 

1. Basic education, 

2. Social environment, 

3. Skill and Training, 

4. Working conditions, 

5. Incentives and motivation, 

6. Management attitude, and 

7. Overall image of the entity (country/industry). 
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Implementive Capability/Technical Know-how/Technical Stock of Knowledge 

An advanced and high technology is worthless and will depress productivity, if an 

adequate amount of technical know-how or implementive capability is not available in the 

country (industry) on the same lines of action as desired by the High Technology. 

Experience of both developed and developing countries shows that without technical 

knowledge, the performance of advanced technology is a failure. 

Organizational and Managerial Awareness 

Organizational and managerial awareness is supposed to be the backbone of any 

country (industry) for its growth and development. Proficient leaders 

(managers/organizers) always lead the country (industry) to the road of success and 

achievements. Proper coordination and cooperation of different sectors (departments) of 

a country's economy is the most important job of the leader (manager). This eventually 

leads to greater productivity and economic growth of the country. On the other hand, 

mismanagement leads to the collapse of the country/industry. Some sensitive 

manager/leaders, and lucky they are, grasp the ailing signs of the country/industry 

situation in time and take a sharp turn by implementing new rules and policies, which 

have already been tested by others, to save their country/industry from disaster. 

Size and Scale Economies 

The economies and diseconomies of scale depend on the size of the plant in operation. 

As will be discussed later in detail, that factor depends upon the elasticity of scale and 

size. 
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Optimal Lot Size and Inventory Policy 

The optimal lot size and inventory policy will decrease the cost of production and 

avoid any shortages that can occur at the peak demand of the product. 

Interindustry Shifts and Quality of Resources 

Changes in the quality and quantity of resource allocation and/or substitution by the 

management can affect the cost of production. The poor quality substitute or non-optimal 

allocation of the resources can ruin the image of the industry and create financial 

problems leading to bankruptcy. Uneven allocations within departments will cause some 

schedule, labor and maintenance problems. This also results in less productivity. 

Availability of Domestic Resources 

The domestic resource for inputs will be far more cheaper and cost effective, 

compared to the imported one. The exploitation of demostic resource usage will help the 

industry and the country in productivity performance and economic well-being of the 

society. 

Another area to be researched by the management is the area of material requirement 

planning or manufacturing resource planning (MRP) for increasing industrial 

productivity. Traditionally it is accepted that out of 100% of the time spent in the shop 

by a job, only 1.5% of the time the actual operation is done on the job, while 98.5% of 

the time the job is either moving or waiting for the operation. This is a very important 

consideration for a keen and sensitive management. 
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The economic growth of a country is proportional to the rate at which productivity 

increases or decreases. The western world is moving into a postindustrial society on the 

basis of their productivity growth. It is trying to compete fairly and successfully for a 

fair share in the global market place for consumer goods. A company can only operate 

successfully in a national/international market place if it can respond instantaneously to 

the changing market requirement without the loss of economical, functional and aesthetic 

capabilities of the product. Hence productivity should not diminish even when the 

demand variation is differential. 

In general, the quality of life and economic well being is related indirectly to the cost 

of creating wealth, i.e., the cost accrued by the industrial sector or manufacturing 

industries. The lesser the cost of manufacturing, the higher the level of productivity will 

be of an industrial concern, and the country will be more prosperous. To date, very little 

has been done in this area. There are four studies worth mentioning, out of which three 

are dealing with the general manufacturing sector of Pakistan, and the fourth one sheds 

some light on the textile manufacturing and expresses an urgent need for another 

thorough study (1989), 

This study is concerned with an analysis of the productivity growth of Pakistan's large 

scale textile industry. The large scale textile manufacturing industry is of paramount 

importance to the country because it is the predominant subsector for export as well as 

domestic consumption. The second reason is because of its linkage to the agriculture 

industry, the output of which is the input of this industry. Both these industries are labor 
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using. In a country like Pakistan where capital is scarce, it is very important to explore 

the capital saving possibilities in the industrial sector because of abundant labor. 

As the value added by large scale manufacturing industries (textiles inclusive) has 

declined from .30 to .16 over the period of 1970-71 to 1980-81, and employment from 

.48 to .41 in the same period. It is the general objective of this ; tudy to undertake a 

systematic analysis of textiles manufacturing trends for improving the productivity level, 

which will help improve the economic well being of the people and the country. 

Productivity can be measured partially with respect to individual factors as the ratio of 

total output to the individual classes of input and most importantly of labor. It is also 

measured with respect to all classes of input as the ratio of total output to total factors 

input, which is also known as multifactor productivity. These terms are used 

interchangeably in the literature. It is the residual of forces (factors) which are usually 

difficult to include in capital and labor productive stocks. This can be a mixture of both 

neutral and non-neutral technological changes, improvements in organizational and 

managerial structure, control of inventory and production flow process, changes in the 

quality of labor skills, material flow, material requirement and material handling 

techniques, changes in top executives policies and overall planning of the organization. 

Practically productivity is much more than a technological change, and this study will 

focus attention on the aspect of this input in total factor productivity modeling. 

Multifactor productivity is measured as the ratio of real product to the associated real 

factor costs, labor and non labor. The weights are changed periodically to reflect 
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changes in the structure of production and in relative prices of outputs and of labor and 

capital inputs. 

To analyze industrial growth, productivity and technology in the Pakistani large scale 

textile industry, the concept of aggregate production functions and duality of cost 

functions and procedure for their estimation will be utilized. The production function is a 

mathematical notation which shows the relationship between inputs and outputs of any 

particular system. 

The system functional form introduced by Cobb-Douglas (CD) [1928] has an 

important impact on estimation of functional relationship for production or cost function. 

Basically, the whole effort was diverted to estimate the substitution effect between inputs. 

Usually, the substitution effect is demonstrated by the elasticity of substitution and 

denoted by a. The principle of substitutability suggests that it is possible to produce a 

constant output level with a variety of input combination, only for those functions in 

which inputs are substitutable. There are many different definitions of substitution 

elasticity. Hicks (1963) offered the definition for two input x, and x^ in the mathematical 

form as; 

_d(xjx,)ld(f,/f^) where f^=^dx^ Pnn.Hnn 1 1 
d{x,lx,)ldm ^ 

is given by the ratio of rotational change of the input ratios to the marginal rates of 

technical substitution, i.e., Ak/At (see Figure 1.1). It can be readily seen from the curve 

that it is a measure of length of the arc CD or curvature of the isoquant. 

In case of cost function o-jj between x, and X; gives the response of the ratio of the 

two factor demands when their price ratio changes, while output and other input 
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Figure 1.1 Elasticity of substitution (Chambers, 1990, p. 31) 
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quantities are held constant. In the logarithmic form it is 

aj2 = ôlnCXj/XjVôlnCwj/Wj), = input price Equation 1.2 

and measures the price induced change in the rate x/xg, conditional to other factors. It is 

also known as direct elasticity of substitution. 

Another equivalent mathematical expression for a is 

^ Vz) ^ f^ = and fij = Equation 1.3 

- 2///i2 + /î/)  ̂dx, dx^dxj 

The matrix form of the Equation 1.2 is 

o A fz 

Vi * 'A & wWe F- f, /„ 
% 

Equation 1.4 

^2 fi2 fn 

is the bordered Hessian determinant of the production function, and F,; is the cofactor of 

fi2) i-6., 

o /i 
Pn = 

fz fn 
= -Ui- Equation 1.5 

If production function is twice continuously differentiable, then Young's theorem implies 

that fi2 = fai which is a symmetry condition. 

or 
d Mxjx^) d InCx/Xg) 

Equation 1.6 
d d 

For production function and for cost function ln(f,/f2) is replaced by ln(w,/w2). Hick's 

elasticity is also called direct elasticity of substitution and denoted by (if 1,2 is replaced 

by i,j) and it can be interpreted as short run or instantaneous, because it measures the 



www.manaraa.com

12 

degree of substitutability between input i and j while all other inputs are held constant 

[all Xk(k ^ i, j)=const]. 

The second definition of elasticity by Allen (1938) and Uzawa (1962) is the 

generalized form of Equation 1.4 

— .—y (r/tTt1nr<irtn 1 0 Miith iA E<JUatiOn 1.7 a,. = • •••—L {replacing 1,2 with if) 

where 

fx fi • fn 

fn f\l ' f\n 

P = f2 /2I fll • f2n 

fn fnl • • fn 

Equation 1.8 

and F|j is the cofactor of f^j. Both and ay are symmetric measure of degree of 

substitutability and are equal in the case of two input production/cost functions. 

Economic goods are said to be complementary if < 0 and substitute if o^j = 

ffij> 0. 

The third type is Morishima elasticity, which can be written as: 

M 

IJ 

' A  M El] xff _ ^ 

F  y 1^7 F  y ff'i XfCj F  XjKj F  Equation 1.9 

This shows that o^j is not symmetric -ie- o-jj 9^ oj;. Also this shows that a pair of goods 

can be Allen complements (ff^j<0), where they are Morishima substitute of^, in the case 
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of two inputs while the Allen substitutes are always Morishima substitutes. In the case of 

multi inputs, the asymmetry of the Morishima measure of elasticity (a^j of d has 

important implications in classifying the inputs as complements or substitutes and points 

out the somewhat arbitrary nature of any elasticity of substitution. The Arrow-Chenery-

Minhas-Solow (1961) and Cobb-Douglas (CD) generalization for constant elasticity of 

substitution (CES) and Halten, Carter and Hocking (1957), Bruno (1968), Ravankar 

(1971), and Sato and Hoffman (1968) for variable elasticity of substitution (VES), 

allowed arbitrarily constant value of the elasticity different from unity, but in the 

multifactors case the partial elasticities of substitution have to be equal to the same 

constant. 

Mukeiji (1963), Gorman (1965) and Hanoch (1971) have proposed a functional form 

yielding partial elasticities that can differ along the isoquant pairwise, but still they are in 

constant ratio. 

The above mentioned functional forms cannot be approximated to either second order 

numerical (Taylor Series) or second order differential approximation, and hence are not 

flexible. 

Based on the duality concept between cost and production functions, the production 

function can be traced back from the cost function if information about the cost function 

is available. Mcfadden (1978a) has termed cost functions as "sufficient statistics" for the 

technology (production function). Cost function is the minimum cost of producing a 

given output level during a given time period expressed as function of input prices and 

output. Many flexible functional forms have been developed under the auspices of 
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duality in the context of multifactors inputs such as Diewert (1971) generalized Leontief 

(GL), Christensen, Jorgensen and Lau (1971) Translog (TLOG) and particularly Diewert 

(1974a) Quadratic square rooted (QSR), which has the dual of same form. These flexible 

forms neither restrict a's nor ratios of a's. 

In specifying the functional form for production analysis, it is important that the 

relationship should be estimable with few prior restrictions on the technology. 

Estimability usually determines the choice of form, and if the form is parameterized 

according to economic theory (homogeneity, convexity etc.), duality guarantees the 

existence of a unique dual function. The primary goal of applied production analysis is 

empirical measurement of the economically relevant information that exhaustively 

characterizes the behavior of economic agents. In the case of smooth technologies (those 

that are twice-continuously differentiable) this (behavior of economic agents) includes the 

value of the objective function (the level of cost or output), the gradient of the function 

(the derived demands or MKTS) and Hessian (the matrix of derived demand elasticities). 

The goal is to select a form that should be rich enough in parameters to take care of all 

these above mentioned effects without imposing any prior constraints on these effects. 

For example, if one is investigating the production function (primal technology), one 

should have all the relevant information in term of production level, marginal 

productivities and matrix of elasticities of substitution. The choice of the form is 

important because any conclusion drawn is only valid within the confines of that model, 

and key parameter estimates like elasticities of substitution may be over or under the 

desired fair value. Therefore, it is recommended that form should be as general as 
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possible with as little as possible restriction on the ultimate outcome. The range of 

analysis and classical statistical tests are conducted under the presumption that the general 

form (model) is valid. 

Validation of the model is very important since it is very difficult to discriminate 

among many flexible forms on theoretical grounds because all forms can be interpreted as 

second order approximations to an arbitrary twice differentiable function of the variables 

involved. The only way to discriminate is based on ease of estimation and 

appropriateness of stochastic representation of the model (form). Thus, choosing a 

functional form requires judgement as well as knowledge, and is more a craft than a 

science. 

In the case of cost functions for estimation of share equations, the translog form will 

be the best choice because the share equation system is linear in parameters. On the 

other hand, if an investigator utilizes a cost function linear in input prices, the best choice 

will be Leontief. Goodness of fit tests can be used for discriminating among the flexible 

forms as used by Bemdt, Darrough and Diewert in the Baysian framework and White 

Sell (1985) in the TLOG case. Kiefer's (1975) development of flexible form, based on 

the Box-Cox (1974) transformation, has been modified and extended by Khaled (1978). 

The present study is heavily based on the generalized, Box-Cox (GBC) functional form 

used by Khaled (1978). The GBC form allows parametric tests of homotheticity, 

homogeneity and symmetry. Parks' (1971) and Woodland's (1975) extensions of 

homothetic GL functions are more convenient than GBC, but it is not possible to impose 

homotheticity and homogeneity separately. Contrary to Diamond and McFadden (1975), 
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the GBC formulation is capable of identifying the bias in technical change and the 

elasticities of substitution simultaneously by utilizing time series data alone. This results 

in parametric estimation of total factor productivity (TFP), free from the errors of cost 

minimizing behavior, as compared to the traditional residual measure in terms of rate of 

growth in real output minus the rate of growth in real input, which is only justifiable in 

the case of constant returns to scale technology. While in the variable case the TFP 

includes the effect of technical change as well as economies of scales in the residual 

measure of productivity. 

The GBC representation of functional form is rich in parameters (more free 

parameters) and thus suitable for analyzing interrelationship among various other 

functional forms. It can be used to consider the multiplicity of scale and technical change 

combination. 

The main purpose of this research is to use the GBC formulation for productivity 

analysis of Pakistani Textile Industry (large scale). Productivity growth will be analyzed 

by considering input price effects, non-neutral scale effects and biased technical change. 

For estimating the textile industry a four input model will be used. The inputs will be 

capital, labor, energy and intermediate material. The model estimation is based on the 

maximum likelihood method, and the main hypotheses tested are neutrality of technical 

change and homothecity. 

In Chapter II the general framework of the model will be presented. In particular the 

technical change and scale effects parameters will be given due consideration, including 

total factor productivity. 
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Chapter III will be devoted to empirical implementation and specification of the 

stochastic frame work for share and cost equations. The advantage of stochastic 

specification is that the maximum likelihood function is continuous at the value X = 0, 

the transformation parameter. The test criteria will also be considered in this chapter. 

In Chapter IV the GBC functional form will be utilized to estimate a four input model 

of the Pakistani Textile Industry. For estimation, the data used will be from the Census 

of Manufacturing Industries, Pakistani Statistical Yearbook and Economic Survey of 

Pakistan. The important features of the data and some relevant empirical evidence will 

be considered. The focus of the estimated results will be the choice of appropriate 

technology and functional form, cost function properties and various elasticities estimates, 

returns to scale and total factor productivity and their responses to changes in the 

explanatory variables—input prices, output and time. 

In the last chapter the summary and conclusions based on the analysis will be 

presented to facilitate the decision maker/policy maker's decisions for future courses of 
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CHAPTER IL ECONOMETRIC INVESTIGATION OF THE MODEL 

The fundamental assumption is that of relationships between outputs and inputs, 

which can be represented in some mathematical form as 

y(2)=0 Equation 2.1 

where z is a real valued, m-dimensional vector containing both inputs and outputs 

produced in a given time period. If we explicitly show the inputs and outputs in the 

functional form then the above equation can be written as 

y(y,x)=0 Equation 2.2 

where x is an n-dimension vector of non-negative inputs and y is an (m - n)-dimensional 

vector of non-negative outputs. The inputs and outputs included in the function are those 

on which effective control is possible, are economically scarce and are definitely positive. 

The Equations 2.1 and 2.2 are very general representations of technology for a 
•f 

multiplicity of outputs and inputs. In our case, we are only concerned with single 

outputs. Thus 'Y' can be assumed as scalar, and the solution to Equation 2.2 can take 

the form 

y=f(x) Equation 2.3 

where f(x) is a single valued function of x's (for a unique combination of inputs x, there 

corresponds a unique level of output). Therefore, it is always assumed that the 

production function yields the maximum output for an arbitrary input vector. If this 

maximum level is not attained, there will be technical inefficiencies. 
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Properties of Production Function 

1. If x' (another input combination) > x (existing), then f(x') > f(x). This gives 

monotonie behavior of the production function. 

2. If x' > x, then f(x') > f(x) =» strict monotonicity. These two properties show that 

marginal productivities are positive, and if f(x) is differentiable then marginal 

productivity of X; is 

MP, = ^x)ldx. Equation 2.4 

3. The input requirement set denoted as V(y) which is the combination of all inputs 

capable of producing the desired level of y, is convex, i.e., V(y)= [x; f(x) > y] is a 

convex set. This is quasi-concavity of f(x), and is implied by concavity of f(x); that is, 

for any arbitrary value of 6 such that 

0 3 6 3 1, + (l-8)x3 ^ Qfix") + (l-QW*) Equation 2.5 

Convexity can be defined as if x, and x^ are capable of producing 'y', then any 

weighted average of these two input bundles also can, i.e., if x,, X; are element of V(y) 

then X3 = 0X| + (l-0)x2 is also an element of V(y). If V(y) is strictly convex set, then 

f(x) is said to be strictly quasi-concave. Also Equation 2.5 says that as the utilization of 

a particular input rises, keeping all others fixed, there will be no marginal increase in the 

output, that is that the law of diminishing marginal productivity applies. In the case 

where f(x) is twice continuously derivable, the Equation 2.5 means that the diagonal 

elements of the Hessian matrix {dH(\)/d\^)) are non-positive and the matrix itself is 

negative semi-definite. 
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4. Strictly positive output cannot be produced without any input, i.e., f(OJ= 0, where 

On is the null vector, which is known as weak essentiality. Also all inputs are essential to 

the production of positive amount of output, i.e., f(x,,X2 - Xj, o Xi+, ~ \J=0 for all X; 

and is known as strict essentiality. 

5. It is always possible to produce any positive output, i.e., V(y) is a closed and 

non-empty set for y > 0 closedness means that f(x) has not discontinuities over the 

boundaries and has well defined constrained maxima and minima. 

6. The function f(x) is finite, non-negative, real valued, and single valued for all 

non-negative and finite x. 

Definitions 

The function f(x) is continuous, twice-derivable, non-decreasing and quasi concave 

with input vector x ^ 0 and output y. The following definitions apply to y=f(x) 

Average Product: The average product of Xj is given as 

APi = #)/%, = ylx^ Equation 2.6 

Marginal Product: It is the change in output associated with small change of X; or 

MP, = df{x)ldx. = dyjdx^ Equation 2.7 

Elasticitv of Output W: It is the percentage change in output corresponding to 1 % 

change in the input i or 

e, = (¥.xydxi)lylx^ = f =MPJAP,= ^^"^^\ Equation 2.8 
^ ' dlnx I Âx)lxi ^ 

When Cj = 1, MP; = AP; which implies that the average product is maximized. 
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Elasticity of Scale: It is also known as function coefficient or passuss coefficient. 

It gives the scalar valued measure of the changes in output corresponding to simultaneous 

changes in all inputs. Mathematically the elasticity of scale e is defined as 

dlnA 
Equation 2.9 

x=i 

and shows how output changes as each x is multiplied with a scaler X. There are four 

important facts related to elasticity of scale, by which the production can be 

characterized. 

(a) Constant returns to scale If e=l, then the production function exhibits 

constant returns to scale and, for any x, f(Xx)=Xf(x), which means that multiplying all 

inputs by a scalar is same as multiplying the output by the same scalar. Also for e = 1, 

the isoquants are equally spaced. 

(b) Decreasing returns to scale When e < 1, the function exhibit 

decreasing return to scale and isoquants spread out more and more if one move along a 

ray away from the origin. Also 

j{Xx) ^ Xm for I Equation 2.10 

The difference between diminishing marginal productivity and decreasing returns to scale 

is that the first one is the measure of output variation in response to single input change, 

while the latter is associated with simultaneous changes in all inputs. 
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(c) Increasing returns to scale If e> 1, then function shows increasing 

return to scale and isoquants spread out as one moves along a line towards origin. Also 

A^x) i Xfix) for X > \. Equation 2.11 

(d) Economies of scales In the case of decreasing return to scale case it is 

preferable to build'm' small plants than one big one, provided the cost to build is the 

same in both cases, while for increasing return the bigger plant will take over. With 

constant returns it doesn't matter which plant is built. Hence we say that there will be 

diseconomies of scale in the first case, and economies of scale in the second case. When 

e < 1 or e > I the entrepreneur is concerned with the economies or diseconomies of 

scale, while at e = 1 he is indifferent. It is also worth mentioning that e is an 

instantaneous local measure and it may change its values over the entire feasible input 

space to constant, increasing or decreasing returns. Evaluating Equation 2.9 we get that 

g = dlnfjXx) 

dlnX i=i '=1 
= ^ 6, = ^ MPJAPi Equation 2.12 

" i=i \y) 

n 

From Equation 2.12, 

MP 
e < 1 =» 2€, < 1 =» 2 < 1 =» 2MP<2i4P Equation 2.13 

AP, 

It shows that decreasing returns to scale functions must have all their marginal 

product less than the corresponding average product. This also shows that for a 

production function with decreasing returns to scale over the entire input space, the 

marginal contribution of an input to an output will always be less than its average 

contribution. Output will increase at a slower rate than input. 
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Transform of a Production Function 

A transform of production function f(x) is defined as F(f(x)), where F( ) is a twice-

derivable, finite, non-negative and non-decreasing function of f(x) and preserves all the 

basic properties of f(x). The idea behind this that once a valid function is specified, a 

family of the functions can be generated by the transform F(f(x)). 

nomothetic Functions 

A function is said to be homothetic if it can be expressed as y=F(f(x)), where F is 

a monotonie increasing function of a single variable and f(x) is linearly homogenous 

function of x, that is f(Xx)=Xf(x) or f(x) is homogenous of degree 1. Thus homogeneity 

of degree 1 is a special case of homotheticity of a function. Homothetic production 

functions are particularly important because this is the only class of transforms in which 

proportional changes in all inputs are accurately reflected by the same proportional 

change in aggregate input. If we differentiate the above function with respect x, and x, 

then we get 

Byjdx, djix)ldxi MP. 
= = = Marginal rate of technical substitution 

dyldXj df(pc)ldxj MPj Equation 2.14 

between input i and input j or MRTSy. 

As f(x) is linearly homogenous, each derivative on RHS is homogenous of degree 0. 

From f(Xx) = Xf(x) we get by differentiation: 

MM . X = X or ^Xx)ldx = ^x)ldx Equation 2.15 
dx dx 

This gives us the homogeneity of degree 0. For a function to be homothetic, the first 

partial derivatives, if they exist, must be homogenous of degree 0. In Equation 2.14, if 
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we multiply the argument of the function in the numerator and the denominator by a 

scalar, it will not alter the value of the equation. This means that the ratio of the 

MPj/MPj remains constant or MRTSy is constant along a ray from the origin. When the 

MRTS is constant, the shifts in the isoquants will be parallel. Hence, homothecity 

ensures that all isoquants are parallel and have the same slope. 

Separability 

If the stages of an aggregate production function can be broken down such that each 

stage is a production function, then this is separable technology. Mathematically, the 

marginal rate of technical substitution between inputs defines separability for a twice-

derivable and continuous production function. Let us see how inputs X; and Xj are 

separable from input x^, when changes in Xj are affecting X; in response to the changes in 

Xy.. We have MRTSy = - MP/MPj, or 

MRTSfj = —-, because w>e know that MP^ = MPj = dfldXj Equation 2.16 
^dXj 

Differentiating Equation 2.16 with respect to x^: 

Equation 2,17 
djMRTSfj) _ _ a 

msxj^ atj at, 

If this last is zero, then X; and Xj are separable from x^, otherwise they are not. This tells 

us that the slope of the isoquant in i-j space is constant, irrespective of the k space. Also 

i and j are not equal to k. Another form of Equation 2.17 is: 
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djMRTSiP ^ BjMPJMPp dmP)(MPj )] 

d X f .  d X / ^  d X f ^  

= - ^ + (MP)-' 

where fj,^ = = ^fldx^dx^ 

and multiplying both sides by the logarithmic form is 

dlnfjdlnx^ = dlnfjdlnx^ -where = dfldXp = ^dx. Equation 2.18 

Equation 2.18 shows us that under separability, the elasticity of the marginal product of 

Xj w.r.t. Xk equals the elasticity of the marginal product of Xj w.r.t. x^. Generally, if the 

input vector I is partitioned into subsets such that Î = (I', P F I'' . . T) where Î 

corresponds to ^=[x'...x"], then the production function is weakly separable in the 

partition Î if 

6 {^x)ldx\ 

dx^ 
= 0, I j e r, ke r Equation 2.19 

[midxjj 

f(x) is weakly separable in the partition Î, if the MRTSjj in the same subset, are 

independent of all inputs that are not the elements of their corresponding subset. 

The function f(x) is supposed to be strongly separable in partition î if 

a (midXi] 

dx^ 
= 0, i e r, j e  r, k e  r U r Equation 2.20 

^x)ldxjj 

(see Figure 2.1). It shows that a strongly separable function can be written as y=F(f(x')) 

where in Ef(x'), i=stages of production. This is because y=F(f(x)) is a homothetic 

function and f(x) is the aggregate of f(x') and is linearly homogeneous. Thus a strongly 

separable function is also a homothetic function. The function is factor wise separable if 
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Figure 2.1 Explanation of strong separability 
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for Xj, Xj and x^ as mentioned above 

Equation 2.21 

The assumption of separability imposes restrictions on the function and thus 

decreases the number of candidate production functions. It also greatly reduces the 

number of parameters to be estimated. 

Cost Functions 

For profit maximizing firms, production and cost functions are integral parts of one 

another because the profit can be maximized either maximizing output for a given level 

of cost involved or minimizing cost for given level of output. Initiatively it looks easier 

to cut down the cost for constant output than to increase output, without increasing the 

cost. The maximization of output or minimization of cost means maximization of the 

profit IT. The cost function is defined as "the minimum cost of producing a given level in 

a given time period with given input prices." Mathematically this can be written as 

where wis a strictly positive input price vector and x is the vector of inputs. V(y) is the 

input requirement set. The cost function or curve is the locus of the set of all possible 

pairs of output and cost along the expansion path as shown in Figure 2.2. It can be seen 

easily from the diagram that cost is constant along the isocost curves for given input 

combinations, while isoquants (the locus of input combinations for which output is fixed) 

gives the maximum output for given cost is the point where cost line become tange to 

isoquant. Also cost can be minimized for given output where an isoquant is tangent to 

C = C(w,y) = min [w.x; x e KCy)], Equation 2.22 
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Expansion Path, Along Which 
MRTS,2 = H'l/wj 

Short-Run Expansion Path 
(at *2 = ) 

>• =/(•*!.*2) = Constant 
(Isoquant) 

C= + Wj^j ~ Constant 
(Isocost) 

Figure 2.2 Expansion paths for the firm (Intriligator, 1978, p. 253) 
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the cost line. The expansion path is the only maximum output or minimum cost solution 

under equilibrium condition for a firm, and is the locus of tangency points of the isocost 

and the isoquant curves. 

If isoquants are characterized by the production function y=f(x), then the profit ir 

of the firm to be maximized is given by revenue minus costs for a given output y or 

mathematically 

IT = py - C = pfix) - C(w,y) Equation 2.23 

where p equal output price, or 

K = pjix) - wpc^ Equation 2.24 

For maximum ir first p^al derivatives should exist and equal to zero, orwhich shows 
= p - w, = 0 => = —- = MP,, Equation 2.25 

that for maximum profit ir, the marginal product of each input i must be equal to its real 

wage, the wage input price divided by price of the output. As we know that marginal 

rate of technical substitution is the ratio of their marginal products, therefore, 

MRTS,. = MPJMP, = — = w/w. Equation 2.28 
V J J 

In the case of two inputs x,, Xj the cost function 

C  =  W j X j  +  WjXj = constant, for an isocost curve. Equation 2.29 

Differentiating C totally we get 

WjdtCj + WjdtCj =0 or dxjdx^ = - wjw^ Equation 2.30 

Equation 2.30 gives the slope of the isocost curve. 

Also if we differentiate y = f(x) = f(x,,x2) totally for given (constant) level of 

output we get that 
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5. An increasing output cannot decrease the cost, i.e., if y ^ y', then c(w,y) > 

c(w,y'). 

6. It is costless to produce nothing, i.e., zero fixed cost, i.e., c(w,o) = 0. 

7. For differentiable cost function, the optimal (cost-minimizing) factor input 

demand is given by the slope of the function, i.e., 

n 
c(w,y) = % c = Differentiatingw.r.t w, wc get Equation 2.32 

t=i 
^c^^w^ = Xf or X, = dciw,y)ldw. 

Equation 2.32 is also known as Shephard's lemma. This shows that behavior of derived 

demand is determined by the properties of cost function. It holds strictly for the convex 

set of input requirements [V(y)]. 

Derived Demand Behavior and Input Price Changes 

From Equation 2.32 we know that 

Xj (derived demand input vector) = 5c(w,y)/6w; 

The effect of a price increase of Wj is given by differentiating X; with respect to Wj 

partially 

dxJdWj = ^cldw^dwj Equation 2.33 

The right hand side of Equation 2.33 is the Hessian matrix of the cost function. Hence 

the derived demand responses to input price changes can be calculated from the Hessian 

matrix. Applying Euler's theorem to the homogeneous derived demand equation gives us 

by differentiation for each Wj 
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—- • w, = 0, the homogeniety conditions. Equation 2.34 
dWj ' 

Derivability and concavity of the cost function c(w,y) implies that the Hessian matrix is 

negative semidefmite: 

dx^dWj ^ 0 Equation 2.35 

Also, a symmetry or reciprocity condition can be obtained as 

dxJdWj = ^cfdw.dwj = ^c/dwjdw. = dxjdw^. Equation 2.36 

The derived demand elasticity can be given as 

, ̂  Equation 2.37 
^ xJWj dlnw. 

But from Equation 2.34 E ey = 0 and from Equation 2.35 e» < 0. 

Derived demand elasticies are not symmetric, unless normalized properly, i.e., é 

6ji. However, 

V' = ^ = >vx/c(w,y). Equation 2.38 
an expression described as cost share. 

Marginal cost (MO: Defined as the slope of the total cost curve, or 

mathematically 

dc 
MC = —kO, because y is non-decreasing, or 

^ Equation 2.39 
MC . MM = , 3£(M, , > 0, 

By dy 

which shows that MC is linearly homogeneous in the input prices. 
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If we differentiate MC with respect to each W; we get 

^ ̂ y = y ^ ± y i£(Mw. Equation 2.40 
dw. dydw. ' i dw^dy dy i dw. 

d 

dy T,Wi 
= gc(w»y) 

By 
Equation 2.41 

which shows that equiproportional changes in all input prices will shift the MC curve in a 

parallel form. 

Cost and Changes in Output 

The response of derived demand input to changes in output is given by 

differentiating the derived demand Equation 2.32 with respect to output y: 

= dc 

dw. 

5 = _A_ = = A.(Ê£] = 
dy dw.dy dydw. dw. 

dXf BMC 

Equation 2.42 

or 
dy ÔW, 

It shows that the ith input response to a unit change in output is equal to the change in 

MC with respect to a unit change in input price. 

If dx jdy  <  0, then X; is an inferior or regresssive input. 

If dx jdy  >  0 ,  then X; is a normal or progressive input. 

Average cost It is defined as total cost divided by total output. The ratio of 

marginal cost to average cost is known as the cost elasticity (n) w.r.t. output or cost 

flexibility. 

n(w,y) = MC dcfdy dine 

AC . c/y . dlny_ 
Equation 2.43 
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Figure 2.3 Elasticities of scale and size (Chambers, 1990, p. 73) 
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parallel shift of isoquants, or homothetic shift. Such a shift implies that the production 

function is homothetic, and coincidence of points C and B will suggest a homothetic cost 

function, with the property of equality of (e) and (e*). This gives us that the elasticity of 

scale (e), and hence of size (e*), for homothetic function, is only a function of the output 

level and is independent of X;. 

Therefore for homothetic functions we can write h(y) = f"(x), and 

h(y) ^ dividing by h(y) we have 
x>Q 

= min[w%: 1 ^ /'(x)/A(y)], and letting x=zh(y), 
x>0 

= min[A(y)z w: 1 £ /*(%)] 
zXi 

= h(y) min[z w: 1 ^ /*(z)l = h(y) c(w) 
/ \ . / ^ \ Equation 2.44 

or ciw,y) = h(y) c(w) ^ 

There are three important facets of homothetic technologies 

(i) The economies of scale are measured easily and comprehensively. 

(ii) The cost function can easily be traced back to the production function 

with homotheticity of the production function. 

(iii) Separability of output from input prices assures a homothetic cost 

function consistent with the production function. 

As we discussed earlier, homogeneous functions are also homothetic functions. 

Therefore, if f(x) is homogenous of degree k then we can write 

Â^) = feWl*. where g(x) is linearly homogeneous. Equation 2.45 
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If y=f(x) then 

y=[gWf or ty]''* = g(x) Equation 2.46 

and the cost function (c.f. Equation 2.44) is 

c(w,y) = [3']''*c(w) = h(y) c(w) Equation 2.47 

When cost flexibility (n) is one, the average cost reaches the value of the marginal cost, 

at the point at which the slope of a tangent to the average cost curve becomes zero, and 

the average cost increases to the right and decreases to the left of this point, indicating 

that the cost function must be convex at that point (see Figure 2.4). As to e*, being the 

reciprocal of n and hence equal to one, it gives us constant return to size at that point. 

To the left of the point, we have decreasing return to size (e* < 1) with increasing AC, 

and, to the right, increasing return to size (e*> 1) with decreasing AC. This shows that 

when the cost function is convex, the production function is concave, which gives us a 

sufficiency condition (see Figure 2.4). 

Duality of Cost and Production Functions 

One of the most important discoveries of linear programming is the concept of 

duality and its important ramifications. According to duality every linear problem has 

associated with it another problem, called the "dual". The relationship between the dual 

problem and the original problem (called Primal) proves to be extremely useful in a 

variety of ways and especially in the economic interpretation of production functions in 

terms of cost functions. One application involves an attempt to isolate circumstances in 

which technology properties can be derived from the economic behavior of optimizing 

agents. The use of cost functions to describe technology involves the equivalence of the 
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specification of a well-behaved cost function and the specification of a well-behaved 

production function. According to McFadden (1978a), the cost function is a "sufficient 

statistic", because all the economically relevant information about technology can be 

obtained from the cost function. 

Production Function (Primal Problem') 

A rational producer in a competitive market will either set output for given cost of 

factor inputs to maximize his profit or minimize the cost of production at given output 

and factor inputs prices. 

The problem of maximizing output at given input factor prices can be written in 

mathematical form as 

n 

Max y = 

n Equation 2.48 
such that 52 ^ w. i = 

yv yr-yn ^ o 

where y is the objective function to be maximized 

yj are decision variables y=f(x,....xj 

ajj, W;, and p; are parameters of the model. 

In vector notation this can be written as 

y = Py Eqution 2.49 
S T Ay = w (w^O), y 2:0 

where y is the output vector. 

The generalization of Shephard's (1953) results by Uzawa (1962) shows that the 

cost function can be used to reconstruct the input requirement set (the production 
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function) from whicli it was generated. As was mentioned above, a producer will 

maximize output or minimize cost, and both points of view lead to the point of tangency 

of the factor price frontier (isocost) with the isoquant (see Figure 2.5). From the factor 

price frontier the slope of the isoquant and relative input utilization can be obtained. 

To see how the price of an input i is affected by changes in other input prices for 

cost to be constant, we can solve for W; in terms of other input prices as 

The constant cost function is c(w,y) = 1; differentiating w.r.t Wj 

^ Equation 2. 
dWj dc(w,y)ldwi 

is the slope of the factor price frontier (isocost) in i-j space (see Figure 2.6). We also 

know that 9c(w,y)/3wj = Xj, and 

illustrating the fact that a price increase of one input will lead to a decrease in the price 

of another to maintain c(w,y)=l. 

In the case of cost mimization, the ratio of marginal productivities is equal to the 

negative of the slope of the isoquant as 

Wi = yv.(w. ... w.-l ... %) Equation 2.50 

6c(w,y) Equation 2.52 

Equation 2.53 
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c(w,y) = 
w,/w 

Figure 2.5 Dual relationship between factor price frontier and isoquant (Chambers, 
1990, p. 90) 
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V ( y )  

< r * o  
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P « o  
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Figure 2.6 Factor price frontiers and isoquant (Chambers, 1990, p. 91) 
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From Equation 2.52 and Equation 2.53, it is clear that from the form of the cost 

function information, the production function (isoquant) can be traced back. This is a 

consequence of the duality theorem, which says that, for every original programming 

problem, there is a dual problem for which the optimal solution will be exactiy the 

solution to the original primal problem. Also the dual of this dual problem is the original 

primal problem. 

Let us use 2,48 as the original primal problem, for which we will write the dual 

problem as 

m 

Miminize C = 
'"=1 Equation 2.54 

m 

such that 53 ^ Pj J = 1,2,...», % 0, ; = 1,2,.../» 
1=1 

or vectorically 

MinC = wx 
such that ax=p(p & 0) x  ̂ 0 

From 2.48 and Equation 2.54 we clearly see that the dual variable corresponds to the 

primal constraints and the dual constraints correspond to the primal variables. There is a 

direct correspondence between the optimal solution of the primal and the dual. The two 

optimal solutions yield the same value for their respective objective functions, or, 

mathematically, if (y,*, ya*. . . y»') and (x,*, x/ . . . x„*) are optimal solution for the 

primal and the dual respectively, then 

f^Pjyj = È . 
j-l i-l 

which is fundamental theorem of duality. 



www.manaraa.com

44 

In Figure 2.5, the elasticity of the curvature of the isocost or factor price frontier 

can be defined as 

d ln(w,W , dc(w,y)ldw2 
p = ——, but = — = —; 

d ln(cj/c,) dc(.w.yVSw, x, c, Equation 2.55 
_ d Mw/Wg) 

^ d InCxj/jCj) 

The elasticity of the curvature of the isoquant is given 

y / .Jf, 

but -^=MP„ -^=MP,.'.-=—= -—=MJÎ7S Equation 2.56 
' a%2 ^ /j MPj vvj 

d InCXj/Xj) o = 
d hiiwjw^) 

Hence p = l/(r which shows that the curvature of the factor price frontier is integrally 

linked to the curvature of the isoquant. If p = oo, then a=0 and when o-=oo, then p=0. 

This effect is shown in Figure 2.6 for a factor price frontier and an isoquant. 

For a production function which is twice-derivable, non-decreasing and quasi-

concave, and for which the vector formulation is y=f(x), with x the vector of non-

negative inputs, we can write a cost-function dual to the production function that will 

minimize cost of production subject to given output as 

c=c(w,y). 

Here c(w,y) is a non-decreasing linearly homogeneous and convex function of strictly 

positive input prices, w > 0. 
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Transformations 

The main purpose of transformations of both independent (x) and dependent (y) 

variables is to insure the simplest possible regression model in term of transformed 

variables, and to assure, in the case of multiple regression, and, in particular, in the 

analysis of response surfaces, that the following assumptions hold: 

(i) simplicity of structure for E(Y) or E(X); 

(ii) constancy of error variance; 

(iii) normality of distributions; 

(iv) independence of observations. 

If the assumptions (i) through (iii) are not satisfied in terms of the original model 

non-linear transformation of y or x may improve matters. The Cox-Box transformation 

with parameter X can be used to define a transformation. There are two ways of 

transforming the dependent variable: 

As an analysis of variance is not changed by linear transformation. Equation 2.57 can be 

written as 

1  i f  k  *  0  . . .  -
y - k provided y > 0 or, 

Iny if k = 0 

Equation 2.57 

if an unidentified origin X; is included, then 

X  i f  k ,  *  0  . . .  ,  
y - A.J provided y > -k^. 

InCy+Xj) if k^ = 0  

Equation 2.58 
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X*0 
Iny X =0 

Equation 2.59 

but Equation 2.57 is preferable for theoretical analysis because it is continuous at X=0. 

Let F(x) be an arbitrary function that can be represented in second-order numerical 

approximation in terms of its arguments. If we evaluate at x°=(l,l,....l) we obtain: 

i=l 2 i J dxfixj 

Fix) = Y„ + è  YA + jZE Pffi 
z i j 

Equation 2.60 
i=l 

where = F(x°),y, = \ Py = 
d X f  '  '  " dxfixj 

From the above discussion we can write a production function comprising 

independent and dependent variables as follows; 

y=F(x) Equation 2.61 

when X ^ 0 we can write Equation 2.61 based on Equation 2.57 as 

^ = F(x). Equation 2.62 

Where the second order numerical approximation of F(x) is 

Fix) = Yo+E 
^ i j 

and 

i=l 

when A # 0 
kll 

when X -» 0 

Equation 2.63 

Equation 2.64 

where y=output and x, = quantity of ith input. 
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Equation 2.62 can be written in alternate form as 

y = [l +XF(x)Y'^ known as a generalized Cox-Box function. Equation 2.65 

Based on the duality theorem, there will be a cost function corresponding to 

Equation 2.61, denoted as 

c — E q u a t i o n  2 . 6 6  

where c(w,y) is a non-decreasing, linearly homogeneous, and concave function of w for 

each y. 

Corresponding to the transformation of Equation 2.65, the generalized Cox-Box cost 

function can be written as 

c(y^,y) = [1 +A, (/(w)] y Equation 2.67 

where G{w) + Ê ^ P„h'.(A)w.(A) Equation 2.68 
i  ̂ i j 

a second order differential approximation for the cost function G(w), where 

(w/'^-l)/X/2 when k * 0 Equation 2.69 
Inw. when A, =0, 

and Wj = price of the input i, c = total cost, and y = output. 

As mentioned above for a twice-derivable function Young's theorem says that 

fi2 Ar 
^X^^XJ dxjdx. 

or /8jj = |8ji Vi,j and linear homogeneity in prices implies that when factor prices double, 

the total cost has to double, which gives 
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EY( = 1 + AY^ E P,y = %Y, /ôr Vi. Equation 2.70 

We can then write Equation 2.67 for the cost function as: 

i/x 
c(w,y) = [1 + XG(w)]y, or 

c(w,y) = 

c(w,y) = 

c(w,y) = 

c(w,y) = 

c(w,y) = 

c(w,y) = 

c(w,y) = 

i J 

1/X 
y, or 

ux 
y, or E V, + * 7E E 

J ^ ^ i ^ i J 

f E - f v i  E | V « W  *  E f w ^ '  +  E E - | i ' i ; « ' i W » ' / ^ >  

f E E P „  +  E E P r A )  •  E E *  E E  
* ! j I j i J 

m 
y, or 

f E E P i J i  +  - y > v , a ) > v / w  

2 
X 

|EEP«(»«'' 
A. i J 

E E •*• ij 

4 
l/x 
y, or 

2 

•y, or 

< J 

IM 

i/i 
y, or 

lA 
• y-

Equation 2.71 

Derivation of Other Functional Forms 

We can write Equation 2,67 as 

i/x 
c(w,y) = [1 + AG(w)]y or 

cW) 
-1 

= G(w) or 

1
 

X \ 
- 1 

y / = Yo + Ê Y.w.W + P,y>v,.(X)w/A). Equation 2.72 
2 ij /=i 
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Taking the limit as X =>0 we get 

l^cÇ^ = ^ Y,lnw,. + E P,^lnw.lnw. 
y 1=1 2 y 

çOjwO . . m,* cost 
y fofoZ output 

" 1 
In M.C. = Y„ + £ Y>Wj + -EE Pi/lnw.lnw^. 

Z i y 
Equation 2.73 

1=1 

which is a translog unit-cost-function. 

Now as X -* 0 -* 1 

and Y, P,y = =» 0. 

Substituting into Equation 2.73, we get 

n 

In u.c. = Yo + E Y,low, 
i 

which is a unit cost CD function. Again, Equation 2.71 can be written as 

Equation 2.74 

Equation 2.75 

and, putting X=l, we get 

u.c.'iZE Equation 2.76 
« ; 

which is a generalized Leontief unit cost function and, if /Jy 0 for i=j, then Equation 

2.76 becomes 

u.c. = 252 P,j(H',w,y/2 = 2]] p,..w., 
i i 

which is a Leontief unit cost function. 
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Similarly if we put X=2 in Equation 2.75, we get 

( c(w,y)f _ 

cW) _ 

« J 

or = u • c = 
\ 
EEP ,jW|W,. 

i J 

which is a quadratic unit cost function. 

Again, if we put iSy = 0, if i =5^ j in Equation 2.71 we get 

u • c = 
À i J 

7" 

1/x 

E 
k I 

which is constant-elasticity-of-substitution function (CES). 

If we put X=2 in Equation 2.78 we get 

11/2 

M • C = E 

Equation 2.77 

Equation 2.78 

Equation 2.79 

In Equation 2.78 if we put 

P« = ^P« = 0, 

then we get 

E tPw " E Pu -
i  ̂ I 

and therefore 

u ' c = E Pm 
IM 

Taking the limit as X 0 we get 

u • c = WjP*., 

which is a CD function. In Equation 2.71 if we put X = -1 we get 



www.manaraa.com

51 

M • C = 

u • c 

. ' J 

^ = -2EE 
i j 

-1 

or 

if 

then 

7^ i (W(W,y/2 

-2py = Pj, 

ft * 
—{inverse of unit cost) = — 

u c 

For X = -2 we get 

u • c = 

1 
M • C 

EE PvKWy)"' 
'• j 

(inverse of unit cost) = 

-1/2 

EEpJ/^.^-
I / 

1/2 

- E E P ûK ;̂)"' 
' ; 

1/2 

> if -p; = P,r 

Equation 2.80 

Equation 2.81 

Technical Change and Returns to Scale 

The generalized cost function can be modified to include scale and technical change 

effect. Thus the cost function of Equation 2.67 can be modified as 

c(w,y,t) = [l+AG(w)]'/^ Equation 2.82 

where 

0 «(a.y.w) = a + —Iny + ^ Equation 2.83 
2 i 

and a is a scale parameter which depends on output and inputs price W;, and 

T(jt,w,y) = (t + —r + E'^i^^i Equation 2.84 
2 i 
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where T(t,w,y) is a technical change function dependent upon time, input variable prices 

and output. In terms of Hicks' (1963) induced invention hypothesis, the technical change 

is a response to market phenomena such as relative price changes, i.e., is a consequence 

of investment in the quality of labor and capital. The measurement of technical change is 

based on two approaches—(i) time trend is treated as continuous variable, and (ii) time is 

treated as discrete intervals. The generalized production function Equation 2.65 can be 

written with technical change as 

y = [1 + XF(x,t)f'^ or^ ^ ^ = F(x,t). 

Taking the limit as X=K) and differentiating w.r.t t gives 

rate of technical change. Equation 2.85 
dt dt 

Technical change may be embodied or disembodied. Embodied technical change is 

the after-effect of new inputs with better qualities. Disembodied changes are productivity 

changes (improvements), while inputs qualities and quantities are kept constant. 

Technical change can be progressive or regressive. A progressive technical change 

is one in which output expands and allows same input bundles to produce more that what 

was being produced. It is regressive if output shrinks for the same input bundles over the 

time period. That is, isoquants shift toward the origin or away from the origin in 

progressive and regressive technical change (Figure 2.7). In the third category, the 

passage of time generates an isoquant intersecting the previous one as shown in Figure 

2.8. It is a sort of rotation of isoquants due to technical change which can be measured 

by 
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dlnF(x,t) ^ dlny ^ Equation 2.86 
dt dt 

The rate of technical change is locally progressive if T(x,t) > 0, and is locally regressive 

ifT(x,t) < 0. 

Technical change can be neutral or non-neutral. As we know, in progressive/-

regressive technical change, the isoquants shift towards or away from the origin. If this 

shift is such that the isoquants remain parallel to each other while shifting in or out, then 

the slopes of the isoquants remain constant or unchanged and hence the marginal rate of 

technical substitution is constant. This is equivalent to saying that MKTS is independent 

of time. Parallel shift demonstrates (see Figure 2.7) that technical change has not altered 

the relative marginal productivities of inputs because AMRTS =0, so that inputs either 

remain neutral during the technical change, or they are affected proportionately in equal 

amounts in such a way that AMRTS =0. Hence this type of technical change is either 

neutral progressive or neutral regressive depending on the sign of the inequality. This 

definition is according to Hicks (1963). Technical change will be non-neutral if the shift 

is non-parallel and AMRTS 0, i.e., not independent of time. 

As neutral technical change (Hicks neutral) is characterized by a constant MRTS or 

constant slope of the isoquants, i.e., independent of time t, so we can define production 

as Hicks neutral if we can write y=[l+XF(f(x),t)]'"', which is linearly homogenous in x, 

separable and homothetic. 

From Equations 2.83 and 2.84, by partial differentiation w.r.t Inw; we get 

= Td., = 0 
dlnw, 
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fixed KfL ratio 

O 

Figure 2.7 Homothetic shift of production function (Hebden, 1983, p. 147) 
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X C? in 1960 

ûin 1980 

60 

Figure 2.8 Non-homothetic shift of production function (Hebden, 1983, p. 146) 
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And 

dT(t,w,y) t. = 0 =» linear homogeneity in prices. Equation 2.87 
dlnWi ^ 

If the cost function is to be consistent with homothetic technology, then it must 

factor into a function of output and one of prices. From Equation 2.83, if (f>i = 0, then 

c(w,y) = [14-Xc(w)]''^ y«(«.y) (omitting the technical change effect). It is clear from this 

equation that c(w,y) = ê(w)f(y), which confirms homotheticity. Also, differentiation of 

Equation 2.83 w.r.t. Iny gives 

dcc(a,yyW) production fanction is homogeneous 
gifiy ~ of degree 1/a in inputs. 

and 

^ot(a,y,w) _ 2 =, constant returns to scale. 
da 

In the case of Hicks neutral technical change, the MKTS is constant at the same point 

where the ratio of the factor costs is also constant, i.e., independent of time. Hence Ti=0 

in Equation 2.84 indicates cost-neutral technical change. Moreover, 8=0 and r ] = 0 ,  give 

us the constant exponential form. Hicks neutral technical change, and shows zero 

interaction between time and scale of production. The only possibility of interaction is 

when the minimum point on the AC curve is either shifted to the right by the technical 

change for scale economies (Cowing, 1974) or increased scale operation may encourage 

technological innovation (Gold 1974). From Equations 2.71 and 2.82 we have 

i/x 
y<'(ao'.yv)gTXt,wj>) Equation 2.88 

Taking the log of both sides and differentiating with respect to Inw;, the ith share cost 

c(w,y) = 
A. i J 
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equation is obtained as follows: 

dlnc(yv,y) + ^^Iny  + T.f, Equation 2.89 

«• J 

where S; is the cost share of input i in the total cost, while output and input prices are 

held constant. 

Differentiation Equation 2.89 w.r.t. t and Iny we get 

If T;=0, then one has cost-neutral technical change, which acts exactly as equally-

augmenting technology, that is, cost neutral technology, which means that cost 

minimizing input ratios are independent of the state of technology. On the other hand, if 

Tj < 0, then technological change decreases the ith share; that is, if technology is not cost 

neutral, the technical change is biased and causes a greater percentage adjustment in one 

input than in another, i.e., the cost-minimizing input ratios no longer are constant 

(independent of the state of technology). 

Technical change is, therefore, unbiased (share neutral) if relative cost shares are 

constant, i.e., 

Equation 2.90 

^ . 0  v , y  
dt 

which is implied as Equation 2.91 

dlnS„ 

But under linear homogeneity of the cost function. 
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cw,=l 

which shows that cost shares are independent of state technology if technical change is 

unbiased (share neutral), i.e., share neutral technical change is equivalent to cost neutral 

technical change. 

Technical changes is often said to be share "i" using or saving if 

> Q 
dt < 

Also, biased technical change can be defined in terms of the ith input demand factor 

Xi(w,y,t), as 

dXiiw,y,t) 
= 0 neutral change 

dt 
> 0 =» input using technical change 
< 0 =» input saving technical change. 

Similarly, non-homotheticity parameter 0; indicates how economies of scale are 

distributed over various inputs. As 

dS, 
= *( = 0, Vi 

dlny 

implies homotheticity of the function and economies of scales are evenly distributed, and 

result in the same proportionate changes in all the input output coefficients. If 0; > 0 then 

an increase in output will result in large diseconomies in the ith input, i.e., the elasticity 

of cost with respect to output will increase 

( dcldy^] 

I c/y )' 

while if 0i<O an increase in output will result in large economies in the ith input, i.e., 
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there is larger proportionate decline in per unit requirements of input, and elasticity will 

decrease. 

i f ' ]  

In the above discussion the input prices W; and time parameter t were held fixed. 

Mathematically, we can write Equation 2.88 as 

= (J, = _^ 
dlny dlny 

' dine ^ 

dlnw, 

d 

dlny 

(^ i  dc]  

c 3w. 

dlny 

/ \ 

M 
f 

•:̂ r' 
/ \ 

= H»; 

'dlny 

= H»: 
dx. 

when is fixed. 

dlny 
-2 dc 

dlny 

wpc, dXj  dc - c dlnx. dine 

c x^dlny cdlny *^1 dlny dlny\ 

Equation 2.92 

where Xi=input i and c=total cost=c(w,y). 

For scale economies 

dlny c/y ^ 

If 
(j), < 0, 

- ËSS. < 0 or ̂  < ̂  < 1 
dlny dlny 

%iy < S < 
xly c/y 

or 

Equation 2.93 

which shows that the input-output coefficients will decrease as y is increasing. 
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As sufficient restrictions are imposed on the general form with scale and technical 

change, it is clear from the above discussion that elasticities of substitution, biases in 

technical change and returns to scales can be calculated. Thus the general form of the 

translog cost function can be obtained from Equation 2.82. 

c(w,y) = [1 + 

let 

c = c(w,y)/y "(«•>'•"'> • Equation 2.94 
then ^ 

c = [1 + or = G(w) 

Taking limit as 

A-0, (c^-lA)-lnc 

But from Equation 2.94 

Inc = 

or lnc(w,y) = Inc + + Zne 

or lnc(w,y) = 

or expanding G(w) as second order Taylor approximation, we get 

lnc(w,y) = Lt 
A.-OI 

i  ̂ i J 

because in the limit 
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or 

Inc = Yo "*• 52 •*" ""52 52 ^i/nw^lnwj + ccia,y,w)lny + T(t,w,y) Equation 2.95 
i  ̂ i J 

which is a translog formulation. Similarly, CD, CES and other specific formulation can 

be obtained from general Equation 2.71, for different values of X. 

Comparative Statics of Generalized Function 

The generalized cost function including technical charge and scale effect is given in 

Equation 2.88, as 

cCvv,}») = f52EP.>K^/'' 

l/X 
y a(aj f ,w)g  T[ iy ,w)^  

and is linearly homogeneous in input prices and symmetric (iSy = /Sjj). A sufficient 

condition for positivity of c(w,y) is that for positive X the parameter matrix of the cost 

function, i.e., [jSjj] should be positive definite. Similarly, for negative X, the [/3jj] should 

be negative definite. A real symmetric matrix B is negative (positive) semi-definite if 

and only if 

^c(yv,y) CBC^O or CBC=0, where C = [c,,] = 
dw.dwj 

If CBC < 0 (strictly negative) or CBC > 0 (strictly positive), then they are negative 

(positive) definite. Also a negative (positive) semidefinite matrix is negative (positive) 

definite only if its non-singular. If B is negative (positive) definite then B"' (inverse) is 

also negative (positive) definite. 
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As we discussed earlier that for any concave (convex) function the Hessian matrix of 

the function should be negative (positive) definite. In our case C=[Cij] would be negative 

(positive) definite if C is concave (convex) in input prices. C will be concave (convex) in 

input prices if 8^c(w,y)/6w;^ is either negative or positive. 

From Equation 2.89, we see that 

i J 

and as long as Sj>0, the function is non-decreasing in input prices. A sufficient 

condition for S, to be non-negative is 

X i 0 

for all i,j. 

The general cost function can be written as 

c(w,y) = [1 + if c = c(w,y) 
then 

{ ^ 
= G(w) 

Taking limit as X-*0 gives 

lnc = LtG(w)or 
A-O 

lnc(w,y) = LtG(w) +lny''^"'^'^^ +lne^''^'^^ 

= Lt G(w) + a(a.,y,w)lny + T(t,w,y) 
x-o 

0 / g 
lnc(w,y) = LtG(w) + alny + — Qnyf + ^ + x +—( + ̂  x^/nw. + r\Iny 

x-o 2 I 2 i 

Now differentiating Equation 2.96 w.r.t Iny we get 

\ 

Equation 2,96 
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= a + 0/ny + ^2 + tir > 0 
Equation 2.97 

dine 

dlny 

for a,0,T| > 0 and ^. > 0 V i 

and the second differential gives 

^ = e ^ 0, 
dlny^ 

for 0^0 

Usually the average cost curve is U-shaped, which means that it must attains a critical 

value y* at which the first derivative is zero and second derivative is positive, with an 

increase in output (y) (See Figure 2.4). Mathematically, 

_6 

dy 

c(w,y')' 02 
— 0 and — 

'c(w,y*) 

. y* > I y* 

Now from the above conditions we have 

3c(>v,y) c(H',y) 

y J 
dciw,y)ldy 

c(w,y)ly 

I 

y 
1 

dy 
^ c(w,y)|' dciw,y)ldy 

3,2 [ ciw,y)/y 
1 = 0  

Equation 2.98 

or L-H-S = n(w,y) = cost flexibility or elasticity of cost w.r.t output or MC/AC. 

We know that, for elasticity of size 

e = / , e\w,y*) = —-
«(w,y) n(wy)  

From the second derivative condition evaluated at y=y*, 
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but — IS me reciprocal oj e 

^ 0 — — is positive 
dy 

< 0. 
By 

dy 
de* 

Hence the average cost curve will be U-shaped if e'(w,y) < 1, i.e., the elasticity of 

size is decreasing for increasing y. 

From the Equation 2.97 it is clear that the cost function is decreasing for increasing 

y, until 0=0, at which point it attains minimum cost and the first derivative of the 

average cost function will vanish. At this point from Equation 2.98 we get the elasticity 

of size e*(w,y) which is reciprocal of elasticity of cost with respect to output n(w,y) 

which is equal to 1. From Equation 2.97 we see that the second derivative is positive, 

which ensures that the average cost function reaches a minimum cost point as y is 

increasing, producing a U-shaped curve. 

Different Elasticities of Generalized Cost Function 

Elasticity of anything is defined as the ratio of the rate of change (partial derivative) 

of that thing to the unit change of what has caused this respective rate change. 

Mathematically 

g = ^x)IBx 

' Âx)lxi 

It can be written in the logarithmic form for any input Xj as: 
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G, = _ àlnfijc) 

ôlnx, 
Equation 2.99 

wiiere f(x)=output, X;=input i, e;=elasticity of output with respect to input. 

We may further define 6;i=own elasticity and e;j=cross elasticity. For example the 

function y=f(x) gives 

_ dlnyf ^ dyJdXj dlny^ 
^ii - and e,, = 

yjx. dlnx^ ' vj yjx. dira. 

For the cost function under discussion the own price elasticity is: 

Equation 2.100 

6,. (own price elasticity) = 
dhxxf 

51nw.. 
Equation 2.101 

But we know (according to Shephard's lemma) that 

= _ 3c(w,y) 
dW; 

Hence 

6.. = d]ii!^dc(w,y)ldw^d\mv. 

= 
w.ë^c(w,y)fdwi A^c, 

= w, - ,  
dciw,y)ldw^ Ac, 

dc Ac, = —and Arc. = 
dw, dwf Equation 2.102 

For Equation 2.88 we have 
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MX 

tE E 
K i j 

^c(w,yydw^ 
6„ = w,^———— = WjA''c/Ac, 

c = clai(t,y,w)T(w,y,t) 
y e 

6c 

' dc(w,y)ldwi 

dc 2w. ô^c 

Xc' 

(I 
iKE P,W»-^ -

;.c 

ôw; Equation 2.103 

Rearranging the terms and putting 

S. = — + F(yJ) Equation 2.104 

'  E E P W "  

where 

Fi(y, t )  = ^ f lny  + T/ 

we get 
(wVc)^ 1 1 f F,(y,01 

+ ^{(5, - F,W))}F,W + -1 

Equation 2.105 
If progress is neutral and the cost function homothetic, then Fj(y,t) => 0 </> => 0 

and T =» 0, hence Equation 2.105 reduces to the form 

^ ^ ^ Equation 2.106 

The cross price elasticity is 

+ Pif g 2 
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^lnx^ y dw^ 

^ 91nw, ôlnw, 

Equation 2.107 

Further, for the cost function under consideration, from 2.103 

e,j = (l-X)Sj + Py + XFj(y,t) + |.(5. - F.(y,t)F.(y,t) Equation 2.108 

For homothetic and neutral change we get 

Equation 2.109 

As mentioned before, Allen partial elasticities can be found by dividing the own and 

cross elasticities by the cost share. 

Thus ffii = ej/Sj and a-,j = ey/Sj where 

dine dine Sj = ,  S,  = 
ôlnw, ' dlnw. 

Equation 2.110 

We can find elasticities for different functional forms by incorporating the corresponding 

restrictions in the above equations. 

1. Translog Function: Put X=0 in Equations 2.106 and 2.109 to obtain 

= S, . P,/S, - 1 (0H.«) Equation 2.111 
^ij = + P(/^i (cross) 

2. Cobb-Douglas: Putting jSy = 0 in Equation 2.111 gives 

e „  = 5 , - 1  

e.j = Sj 
Equation 2.112 

3. Constant Elasticity of Substitution: jSy = 0 at i ^ j in the generalized function gives 

the own and cross price elasticities of the constant elasticity of substitution function as 
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and 

6.. = ( l -k )S .  + À/2 + A/2 - 1 = (5.-l)(l->,) 

e^ j  =  ( l -X)S j  

Equation 2.113 

A/2 

f E PX 
X/2 

X . . - ar z=; 

4. Leontief Cost Function: Putting X = lin Equation 2.113, we get e» = 0, 6^- = 0, 

because, for the Leontief cost function, c(w,y) = y min w/jS;. Differentiating with 
w>0 

respect to W; (input prices). 

dw, 
yl^i = (cost minimizing derived demand) 

Now 

As 

dlnx. ^c(w,y)ldwf 
e,, = = Wy 
" dlnw. ' dc(w,y)/dw. 

Equation 2.114 

^1 = 
_ ac(w,y) 

dw. 

Therefore 
dXi  _ ^c(w,y) _ ^y/P.) 

dwf  
w, = 0 

Hence e;; = 0; similarly ey = 0. 

5. Generalized Leontief Function: Putting X=1 in the generalized function Equations 

2.106 and 2.109, we get 
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G» 

EP.y :W, 

1/2 
-1 

j 

Equation 2.115 

6. Quadratic Function: Putting X=2 in the generalized function Equations 2.106 and 

2.109, we get 

e. = - S. and e,, -
1/2 

E P.;̂ y 1/2 / 
- 5;. 

" EPA)'" ' 

From the above special forms we can find the Allen elasticities by dividing the respective 

expression by Sj and Sj, the ith and jth cost shares. 

Approximation Properties of the Generalized Function 

The given cost function c* can be approximated to c by the generalized function 

because of its free parameters. According to Diewert (1974b), an arbitrary twice-

derivable cost function c* at given values of w*, y* and t* can be approximated as c* = 

c*(w*,y*,t*) = c(w*,y*,t*). For given value of X, symmetry of j8 and linear homogeneity 

of prices, the generalized function has (n+2)(n+3)/2 free parameters, which can be 

chosen to satisfy the following equations: 

(a) or 

c. =c, = dc 

dw, 
+ + xf Equation 2.116 
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(b)  c ; iw\y \n  = c ,pv \y \n  

= e 
c, 

W, W; 
(1-W/ + Py 

r'-y "j 

or c*j = (eij/wpidcldw) for 1 s f s y 2M 

A/2\ 

Equation 2.117 

(c) c^iw\y\t*) = c.yiw*,y\t*) 

a?c ôc/aw. 
or c*=c* = 

for i=l....n 
^w^^ 

P + Qlny + 52 + r) f + 
'  dc^  

dW: iJ i  

Equation 2.118 

id) cj = c% = ô^c de 

dw.dt dw^ 
•C + Ôf + Tj/nW,. + Tl/Zl}' + TjC/Wj 

' 8c ^ 

(«) = <^yy = ^ = Cy/C + 8c/y^ - C^/C 

OO c„* = c„ = -0 = cfic + ÔC 

ôw. 
V '/J 

/or i=l..../i 

Equation 2.119 

Equation 2.120 

Equation 2,121 

/ s • c c Equation 2.122 

In the above equations cf is the derivative of the given cost function to be 

approximated, and c is the generalized cost function; also is cross price elasticity. If 

the parameters of the generalized function are chosen such that the above equations are 

satisfied, then the second order differential approximation requirements are also satisfied. 
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Total Factor Productivity. Rate of Technical Change and Returns to Scale 

In the case of the production function, the total factor productivity is defined as the 

average product of all inputs. If y is output and x is input vector, then total factor 

productivity (TFP) = y/x. Differenting both sides of the equation w.r.t to time 

logarithmically we get 

dln(TFP)ldt = dlnyldt - dlnx/dt Equation 2.123 

Now the time rate of change of aggregate input (dlnx/dt) is equal to the sum of time 

rates of changes of individual inputs, weighted by average cost shares (WjXj/c), and is 

equal to 

^ o r  d l n x / d t  = Y^{w^JcyinxJdt. Equation 2.124 

From Equation 2.123 

dln(TFP)/dt = dlny/dt - Y, — dlnxjdt Equation 2.125 
/ \ 

WpCj  

J \ c 

On the other hand, technical change (TC) is defined as the shift of the production 

function's isoquant over the passage of time or, mathematically, it gives a relationship 

between output, input and time, i.e., y=f(x,t) and TC measures how y changes with 

increase in t, keeping x constant. TC is given by differentiating the above equation 

logarithmically w.r.t. 't' 

TXXf t )  =  d ln f (x , t ) ld t  

The concept input-augmenting or factor-augmenting technical change express how an 

input makes a difference in actual production, rather than just shifting the production 

isoquant with the passage of time. These concepts measure the improvement in input 
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efficiency, and may not be treated as embodied TC (discussed earlier), because the stable 

relationship of output, input and time still exists, though the effectiveness of inputs varies 

over time (e.g., learning by doing). 

Let the effective input vector be x, a function of (x,t); then 

y=f(x(x,t),t). Equation 2.126 

Differentiating Equation 2.126 logarithmically with respect to t, we get 

dlnyldt = y ^ ^ Equation 2.127 
^ 31nJCj dt dt 

Let 6| = elasticity of output with respect to x; then 

X = 
ôlnXj 

6 = elasticity of scale with x = |31n(Xjc)/ôlnA, and 6̂  = -7. 

We can write the above Equation 2.127 as 

ai„yl3, • * M or 
^ Equation 2.128 

ÊMâA = Ëm - ëye.ÊH = T(x,t) 
dt dt ^ ' dt 

Equation 2.128 is made up of two parts, i.e., (i) the first part is a pure functional shift 

and can't be attributed to any particular input; (ii) the second part is composed of scale 

expansion effects given by the elasticity of scale times a weighted average of time rates of 

change of the various effective inputs. 

The concept of Harrod neutrality is generalized by input-augmenting technical 

change. As we have seen, for the two-factor input, Hicks neutrality postulates that the 

marginal rate of technical substitution is independent of time t, while the Harrod 
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neutrality postulates that only labor effectiveness changes over time, implying that all the 

augmentation factors except labor are equal to one. 

For the cost function with time variable't', i.e., c(w,y,t), differentiable in w, the 

behavior of c(w,y,t) is non-decreasing in't', if TC is progressive, and is non-increasing 

in 't' if TC is regressive. 

A unique relationship exists between ATC, 6(lasticity of size) and the derivative of 

the cost function w.r.t time, is known as rate of cost diminution'd', and is explored as 

follows. 

Let 

d(yv,y,t) = Equation 2.129 
dt 

the rate of cost diminution. 

Now consider the Lagrangian of the cost function with fixed output: 

I(c,r) = wx + q(y-fix,t)), q = Lagrange multiplies 

Now by the envelope theorem and Kuhn-Tucker condition 

— = dc(w,y,t)ldt = - q^x,t)ldt Equation 2.130 
dt 

The optimal value of the multiplier q, in cost minimization, equals the marginal cost; 

hence 

q = dc/dy. Equation 2.131 

Putting this value into Equation 2.130, we get 

dc(w,y,t)ldt = - dc/dy-
dt 
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Comparing Equation 2,133 with Equation 2.125 we see that 

TFP = T(x,t), if e* = constant Equation 2.134 

This shows that rate of change of TFP is equal to TC (technical change), when elasticity 

of size is one or production is characterized by constant returns to scale. 

In the case of the generalized function 

d(yv,y,t) = dlncldt = (t+ôf + ^ -c/ww. +^lny) Equation 2.135 

Then 

and 

e*(w,y,?) = = [a + dlny + + T|f 

dine 

(TFP) = diw,y,t) e*iw,y,t). 

-1 Equation 2.136 

Equation 2.137 

which shows that rate of change of total factor productivity can be calculated 

parametrically. 

Sensitivity Analysis 

In the following paragraphs, we analyze the response to changes in output, time, 

price, scale effects, cost diminution and total factor productivity. 

From Equation 2.90 we know that the time rate change of the ith cost share is equal 

to the non-neutrality parameter tj and the logarithmic output change rate of the ith cost 

share is equal to the non-homotheticity parameter (/>;. Mathematically 

dS. < 0 -> input saving (progressive) TC 
—= -c. = 0 - input neutral (neutral) TC 
^ > 0 - input using (regresive) TC 
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dS. < 0 - economies of scale 
Also —- = <})j = 0 - indifferent (homothetic) 

dlny > 0 - diseconomies of scale 

From Equation 2.89 we have by partial differentiation with respect to Inw; 

aSj 

ôlnw, 
Equation 2.138 

and with respect to Inwj 

dlnwj 
Equation 2.139 

where ffa, are defined as before. 

Now let us see how'd', e* and ATFP react to changes in output 'y' and the time 

variable, 't', 

Differenting Equations 2.135, 2.136, and 2.137 with respect to Iny and t, we get 

dd(w,y,t) ^ 

dlny 
n Equation 2.140 

and 

ae*(w,y,0 ^ _ ^.2Q 

dlny 
Equation 2.141 

\ = - [rf(w,y,O(-e*^0) + e*(w,y,f)(-Ti)] 
— = e'(w,y,r)(J(w,y,f)e*(w,y,O0 + n) 

= _ e\w,y,t){TFP(Q) + n). 

Equation 2.142 

Also 

dd(w,y,t) 

dt 
- - Ô Equation 2.143 
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de\w,y,t) _ g.2 
dt 

Equation 2.144 

djTFP)  

dt 

= - [</(w,y,f)(-e'^T|) + €'(-0)] 

= +eXw,y,0[d(H',)',0e*(w,y,0il + ô] 
= -e'(w,y,t)[(TFP)i^) + ô] 

Equation 2.145 

dd Equation 2.146 
dlnw. 

Equation 2.147 

djTFP)  

dlnw. 
=  - ( : ,  +  WFP)y- Equation 2.148 

If 17 <0, then from Equation 2.140 we see that the'd' will increase with increase in y 

(output). This is possible for large-scale plant operation. 

If 0 > 0, then Equation 2.141 gives us that e* will decline as y is increased, that is, 

returns to scale will decrease. As we discussed earlier this decrease will continue until 

the minimum average cost point is attained, at which e'= 1 and returns to scale will 

become constant. 

From Equation 2.142 it is not clear what will happen to TFP when rj < 0 and TFP 

> 0 as output will increase. 

In Equation 2.143, if ô < 0, then'd' will increase with time, while in Equation 

2.144 if Tj < 0, then e* (returns to scale) will be increased by TC. Also, the rate of TFP 

will increase with time if ô < 0, < 0 and TFP > 0 [From Equation 2.145]. 
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From the last three equations we see that if Tj < 0 (input i saving TC), an increase 

in input price Wj, will increase'd', and for 0i < 0, the economies of scale related to 

input i will result in increasing returns to scale with increased price of input i, while total 

factor productivity will also increase with increasing W;, provided (j)-, and t; are negative 

and TFP > 0. 

Other productivity indexes are average product as defined in Equation 2.5, i.e., AP; 

= y/xj. Since X; = Sc/ôWj, the average product productivity index will be affected by the 

relative price changes, irrespective of the fact that scale economies are homothetic and 

technical change may be neutral. 

For the non-neutral and non-homothetic case the partial productivity indexes are 

given as 

dkiiylXf) 
(i ) = [for output variation and input prices w. are fixed\ 

dlny J 
d]n(y /Xj )  

(ii) = (time rate, input prices w. and output fixed) 
dt 

ôln(y/x.) , , 
(m)  = ( input  pr ice  changes)  

dlnw; 

The expression (i) can be evaluated as 

d]n(ylx) ^ ^ ^ ^ dine ^ ^ 

dlny dlny dlny dine dlny dine ^ 

' dira ̂  

Now 

wx 
S^ = —̂  ••• In 5, = Inw^ + Inx^ ~ Ine 
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Differentiating with respect to Inc, 

^lnS^ ^ dlnXf dlnx, 

dine dlnc dine dlnc dlny 

dlnS^ 

dlnc 
Equation 2.149 

Now 

dlny 
dlnS, _ dSJdc _ dlny dc 

S/c dlnc SJc SJc 

Putting this in Equation 2.149 we get 

ôln(y/xj) 

dlny _ ^ dlny _ 4>j 1 

Si dc/c S. dlnc S. 

dlny 

Similarly (ii) is equal to 

dlniylx) 

= - 4)A. Equation 2.150 

dt 
= d  -  x jSp  Equation 2.151 

and (iii) is 

ain(y/x^) 

dlnW; ^ii' Equation 2.152 

and also 

dhx(y/xi) 
—: = - €... 

dlnw, •' 
Equation 2.153 

In the above equations, the scale effect of average product will increase with increase in 

y (output) if <^j < 0 -*• economies of scale. On the other hand, if 0 > 0 then average 

product will decrease -» diseconomies of scale. However 4>i—0, will be a homothetic 

case. The average product increase or decrease will also depend on the input shares (SJ. 

Similarly the increase of the average product is dependent upon the time effect. As also 

seen above in the case of TFP, if T; < 0, then progressive technical change or input i 
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saving TC is experienced, while, if T; > 0 then the average product will decrease and 

hence technical change will be input i using or regressive. The effect of input price w, 

on the average product is given by the negative of the price elasticities. 
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CHAPTER III. DESIGN OF EMPIRICAL MODEL TESTING 

This chapter deals with the issues and problems encountered in empirical 

implementation of the generalized model discussed in the last chapter. In particular, the 

system of estimating equations, their stochastic representation, econometric issues, the 

testing procedure and measures of fit will be discussed in this chapter. 

System of Estimating Equations 

There are two problems with the direct estimation of the cost function alone. The 

first one is that of multi-collinearity and the other is that of optimizing behavior. 

Multicollinearity changes to perfect collinearity when the data matrix has less than full 

rank, and becomes singular and non-invertible due to linear dependency of columns. The 

problem of multicollinearity occurs when the data matrix is not singular but is nearly so. 

The symptoms are very low't' ratios accompanying high 'F' ratios and high values of 

R^. In such situations the remedy is to augment the sample data by data exhibiting 

significant differences from the data already available, or to delete unrepresentative data, 

such as war years. Another way is to provide information directly on some of the 

parameters to be estimated. 

The second approach for treating multicollinearity is to scale down the model. The 

difficulty of this approach is knowing which specific variable might be removed, and 

judicious choices must be made in respecifying the model. High simple or partial 

correlation between two variables will indicate multicollinearity but low values of such 

correlations do not negate it (Chipman 1964). 
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The third approach is to leave the model as it is, because scaling down or 

upgrading the model may induce the specification error. 

The consideration of multicollinearity is also dependent upon the purpose of the 

relationship among explanatory variables usually exists in the forecast period. On the 

other hand, for structural analysis it is a problem and must be taken care of. 

The single equation of the cost function can not fully incorporate the notion of 

optimizing behavior of all relevant economic agents; hence factor demand equations or 

factor share equations should be included in the estimation, to provide additional 

information. 

The generalized cost function with scale and technical change effects is as given in 

the Equation 2.82: 

study. For example, it is not a big problem in the case of forecasting because the same 

c(w,y,t) = [1 + Equation 3.1 

where 

G(w) = Y, + + tÊ è i=0-n, j=l-n, 
n ^ n n Equation 3.2 

i ^ i j 

... _ when X*0 
Inw. when X=0 

, Wj = input price. Equation 3.3 

Equation 3.4 

a=scale parameter, 0=neutrality parameter, <f>j=homotheticity parameter. 

and 
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Tit,w,y) = (t + i =0 - n. Equation 3.5 
i 

The difference between this equation and Equation 2,84 of the second chapter is 

that rj and Ô, in Equation 3.5, are taken as zero, expressing the absence of interaction 

between scale and time, and incorporating the constant exponential form of Hicks neutral 

technical change. 

The share equation system can be obtained by partial differentiation of Equation 3.1 

with respect to input prices Wj. From Equation 2.89 we have 

„ ^ dlnciw,y,t) ^ —i + ^ t Equation 3.6 

'• J 

The restrictions of symmetry, linear homogeneity, homotheticity and neutrality are 

imposed on Equation 3.6 for the shares S;. For other types of functions, the share 

equations can be obtained with the corresponding value of the transformation parameter 

X. For example, in the case of the translog function, the value of the Equation 3.6 as 

\-*0 in the limiting case is given by 

Sf = Y, + E + T,.f Equation 3.7 
j 

On the basis of equations 3.1-3.6, the test for linear homogeneity and symmetry in 

input prices, homotheticity of function and neutrality of technical change can be done 

parametrically and separately. 

If there are no restrictions on the systems of equation, then we have from Equations 

3.1-3.5, the number (n4-l)n + n4-3 + n+ 2 = n^ + 3n+5of free parameters. We 
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Table 3.1. Number of restriction and free parameter in the model 

Number of Parameter n Factor Model 4 Factor Model 

Total Number (n+l)n+n+3+n+2 33 

1. Impose symmetry 
and homogeneity. 

n/2(n+l)+n+l+n+2 
[/3ij=/3ji,S7i=H-X7j 

20 

2. Also homotheticity, 
and 1. 

n/2(n+l)+l+n+2 
[Also E0,=O] 

17 

3. Also neutrality, and 
1. 

n/2(n+l)+n+l+2 
[Z/;=0] 

17 

4. Homotheticity, 
neutrality and 1. 

n/2(n+l)+l+2 13 

5. Homogeneity in 
output, and 3. 

n/2(n+l)+l+2 13 

6. Constant returns, 
and 3. 

n/2(n+l)+2 12 
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can see below that the number of free parameters is reduced gradually as the number of 

restrictions is increased slowly in the general factor (n=4 in our case). 

Stochastic Framework of the Model 

The proper form of the model estimation is to set up the systems of equations into a 

stochastic framework. The deviation of the real optimal values from the observed value 

is considered by the researcher to be due to many types of error. The error term can be 

multiplicative or additive and may be normally distributed or of any other distribution 

type, depending on the model. 

There are four justifications for using stochastic error terms. First, the omission of 

some variables in the equation. Second, is the misspecification of the equation for the 

chosen functional form, i.e., may be linear or non-linear in both the dependent and 

independent variables. Thirdly, the included variables may be measured inaccurately. 

Fourthly, there may be basic randomness in the behavior of both independent and 

dependent variables of the equation. 

In this thesis, the error term is additive normally distributed for the share equations 

and cost equation. The share equations are 

5, = + + T/ + 6. Equation 3.8 

' j 

and the cost function is 

c(}v,y,t) = [1 + XG(h')]''^)' |l/A.ya(y,w)g%w) Equation 3.9 
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If we adjust the cost for technical change and scale we have 

^ ^ - G(w) + w, where c = Equation 3.10 

The transformation of Equation 3.9 is intended to make the error term homoscedastic. 

As we know that shares add up to unity, and to make the errors in Equation 3.8 

independent, we will have to drop one of the share equations from the system. As in the 

case of maximum likelihood estimation involving (a wide range of a priori information, 

pertaining not only to each equation individually, but to several equations simultaneously, 

such as constraints involving coefficients of different structural equations and certain 

restrictions on error structure), it is of no consequence to drop one of the share equations 

because the ML method is invariant to normalization. 

Further we assume that e, and u have joint normal distribution with mean vector 

zero and covariance matrix 0. The fi is non-singular and is assumed to be constant, 

because any scale effects of the error variance-covariance have been taken care of by the 

share equations. 

The observed endogenous variables are total cost c, and share Sj, and, as c, is 

transformed, the likelihood function will include the absolute value of the determinant of 

the transformation. This is known as the Jacobian of the transformation. The value of 

the Jacobian is the matrix containing in its ijth position the derivative of the ith 

observation of u with respect to the jth observation of c,, and similarly for e,. 



www.manaraa.com

87 

du 

dc dS. 

de^ 

dc dS, 

Equation 3.11 

From Equation 3.9 

du _x-i dc -A-i 

dc 
= c. 

dc 
- c. 

e 
— —  =  ^and —  =  0 ,  dejdc = 0  —  =  1 ,  

C, ag, ' 6^, 

and, putting these in above equation, we get 

Equation 3.12 

The log of the concentrated form of the likelihood function (Klein, 1952) for the 

observed total cost Ct and shares S; for T sample observations is given as 

—ln|Q| + ]n{abs J) 
2 f=i  

L(b) = B 

or 

Lib) = B - -^ln|Ô| + XY, Inc, - ' 
T 

E *=l 

T 

E /=l 

Equation 3.13 

here, 

b = a vector of all the parameters 
B = constant term = -T/2 In 2 tt 
Ô = maximum likelihood estimate of 

abs Jt = absolute value of the Jacobian 
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Q = i 
I 

û^û ... ... û% 

û% 
m / A 

... ... €i€j 

n - X  

IW V M-1 
A / A 

Equation 3.14 

where 

u = ^ - G(w) = c^lX - X) 
^ X i J 

Equation 3.15 

and 

e. - 5. - — (t),iny - X/, i=l...«-l 
EEPyK-^)^'^ 

i J 

Equation 3.16 

For different values of X we can get a different functional form; for example when 

\ tends to zero, in Equation 3.13, we have the likelihood functional form for the translog 

function. 

_  T  

Equation 3.17 L„(i>) = B - - £ Inc, 

where 

i=l 

Q. = 1 
T 

M^êjo ... ••• «oê„-

"oêi.o 
./ . 
^1,0^1,0 ••• ••• ê(_oê„ 

KK-uo ••• ^n-l.O^ 

Equation 3.18 

and 
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lim u 
X-O 

= Inc 

lim 
X-'O 

c^-1  - G(w) 

= Inc - Yo - Z -%E Z 
i ^ i J 

Equation 3.19 

lim6j lim 
^'.0 " A-0 " X-0 

S, 
_ (Y,- + E.-

1 + XG(w) 

= s, - Y, - E P,yki% - (|)/My - t;. 

- (j)./ny - x^t 
Equation 3.20 

From the basic theory of transformations, we know that the likelihood function 3.13 

is continuous even at X=0; hence the parameter vector (b) can be estimated by 

maximizing the sample values of this equation. 

The necessary and sufficient condition for the function 3.13 to reach a maximum 

value is 

(a)  =0 and (b) < 0 
db db' 

Equation (a) is the gradient of the function. Equation (b) is Hessian matrix of the 

function. 

If the value obtained above is a global maximum, then the parameter estimates are 

consistent, asymptotically efficient and normal. 

The asymptotic variance of the maximum likelihood function is usually equal to the 

Cramer-Rao lower bound, the lowest asymptotic variance that a consistent estimator can 

have. That is why the maximum likelihood estimate (MLE) is asymptotically efficient. 
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Consequently, the variance (not just the asymptotic variance) of the MLE estimated by an 

estimate of the Cramer-Rao lower bound. 

That is 

Equation 3.21 vm = -
db^ 

where the R.H.S. of Equation 3.21 represents the negative inverse of the Hessian matrix 

for the maximum likelihood estimates. 

Testing Design. Criteria and Measures of Fit 

The actual properties of the true function are not preserved in the case of 

approximation by flexible functional forms (L.J. Lau 1974). Approximating a function 

will induce auto-correlation and hetroscadasticity of an unknown magnitude in the 

residuals. It also obstructs the desired fit of data points, and bias and dispersion of 

parameter estimates. Therefore, to avoid this, the unapproximated generalized function is 

treated in this study. 

For testing hypotheses, the F test is applicable whenever we are testing linear 

restrictions in the context of the classical non-linear regression model. On the other hand 

if the restrictions are non-linear, the model is non-linear in the parameters, or the errors 

are not distributed normally, the F test is inappropriate and usually we look into other 

methods. 

Three asymptotically equivalents tests (methods) are: 

1. Likelihood Ratio Test (LR) 

2. Wald Test (W) 
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3. Lagrange Multiplier Test (LM) 

The test statistics associated with these tests are distributed asymptotically as Chi square 

(x^) with degrees of freedom equal to the number of restrictions being tested, but have 

unknown small sample distribution. The rationales of these tests are different. 

Suppose that g(|3)=0 (in Figure 3.1) at the value of where the function g((3) 

cuts the horizontal axis. According to the three tests we have: 

1. LR Test According to this, if the restriction g(|8)=0 is true, then LnLR, the 

maximized value of InL imposing the restriction should not be significantly less than 

InLmax, the unrestricted maximum value of InL. The LR method tests whether (LnL^ -

LnLmaJ is significantly different from zero. 

2. W Test This test exploits the fact that, if the value of g(|8)=0, then g(/3^^) 

(^MLE unrestricted estimate of /3) should not be significantly different from zero. The 

W method tests whether the difference between (jS)"''® and is significant or not. 

3. LM Test This test considers whether the slope of InL^ w.r.t /3 is different 

from zero (significantly) at because the InL is maximized at point A, where 

ÔlnL/ôjS = 0. 

The choice among these three tests depends upon their small sample distribution 

properties, computational cost involved and difficulties of estimating the desired statistic. 

In our case we take the 'LR' test ratio as the criterion of testing the hypothesis, because 

our cost and share equations are already in the log form. The other reason is, as shown 

by Bemdt and Savin (1977), that for linear models in small sample, the values of these 
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InL 00) 

LM LR 

InL 

MLE ,MLE 

Figure 3.1 Explaining the LR, W and LM statistics (Kennedy, 1985, p. 78) 
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test statistics are such that W>LR>LM for the same data and same restrictions. Also it 

is unbiased and consistent. 

The LR test statistic is computed as -21nX, where X is likelihood ratio, the ratio of 

the restricted maximum of the likelihood (i.e., under the null hypothesis HJ to the 

unrestricted maximum of the likelihood as 

^ ^ max LQ}) over values of b specified by Equation 3.22 

max Kb) over all values of (b) 

In our case it is 2(L^-L,), where 

Lu = log of likelihood of unrestricted model 
Lr = log of likelihood of restricted model. 

This statistic is distributed asymptotically as x' with degrees of freedom equal to the 

number of restrictions in as compared to the number in L^. 

For checking the parameter estimates, the asymptotic't' ratio test is used. This is 

the ratio of the parameter estimate to the asymptotic standard error. This 't' ratio test is 

compared with critical 't' values to test the null hypothesis that the relevant parameter is 

zero. The square of the asymptotic't' ratio, which is called Wald statistic, has already 

been discussed above, and has the distribution with 1 degree of freedom. 

The value of R^ is based on the formula by Baxter and Cragg (1970), and is 

computed to measure the goodness of fit test as follows. 

^2 ^ J _ Equation 3.23 

where 

Lr = log of likelihood (maximum sample value) when all slope coefficient are 
zero except % and X 
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CHAPTER IV. MODEL APPLICATION TO PAKISTANI TEXTILES 
DATA, 1965-1989 

In this chapter we use the generalized functional form discussed in the previous 

chapters to estimate a four-factor model of the Pakistani textile industry. The four 

factors are capital (K), labor (L), energy (E) and intermediate material (M) for the years 

1965-1989. 

A Model 

We assume that the Pakistani textile industry can be characterized by a production 

(or cost) function which is continuous, twice differentiable and concave (convex) in the 

input levels. The inputs are chosen to be at levels, which minimize the total cost of 

producing the desired output with the given input prices, and behavioral knowledge of the 

process of production. The time trend't' in the function is represented as the 

improvement/efficiency in the process of production, or technical change or progress, 

which eventually tends to decrease the cost of production. 

We can have the minimum total cost function from Chapter III as: 

C = c(w.,y,t), where w. = Wj^ w^, w^, Equation 4.1 

and 

Wk = price of capital services (rent/interest) 
Wl = price of labor service (wage rate) 
We = price of energy (unit price) 
Wm = price of other intermediate materials. 

The function in Equation 4.1 is linearly homogeneous and concave in prices, due to 

the duality theorem discussed in Chapter II. 
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The Equation 4.1 can be written in the generalized specification as 

c = [1 + XG(w)]"^ • Equation 4.2 

where 

G(w) = Yo + E Y,w,(A.) + ^52 E Y,;W,(A.)w/A,) ij = iC, I, E, M Equation 4.3 
i ^ i J 

w.(k) = (w*'^-l)/V2 i = AT, I, E, M Equation 4.4 

a(y,w) = a + ^ i = K, L, E, M Equation 4.5 

T(t,w) = Kx + Y, T:,kiw.), i = K, L, E, M Equation 4.6 
i 

By imposing symmetry and linear homogeneity restrictions we can write Equation 

4.2 as 

c = 
A i j 

1/a. 

ya(y,y>)gmw)^ i = 2, E, M Equation 4.7 

The translog form of Equation 4.7 is obtained by letting X -* 0, and, rearranging the 

equation, as in Chapter II, we get 

Itic = Y, + E Y>w,. + jEE + nt,w). Equation 4.8 

i = K, L, E, M 



www.manaraa.com

97 

The share equations are obtained by differentiation of Equation 4.8 as âlnc/ôlnWj 

S. = —^ + Mny + XÎ + e,., i = K, L, E, M Equation 4.9 

o 
i j 

where e-, = error of optimizing behavior (stochastic). 

Si = Y, + E + i^ilny + x.t + e., i = K, L, E, M Equation 4.10 
j 

As we know that ES, = 1, and Equations 4.9 and 4.10 might not satisfy this. To 

avoid this we can arbitrarily drop any one of the equations to normalize the system. The 

maximum likelihood estimate is invariant to this effect. We drop the S^, and the lost 

degrees of freedom of the system can be recovered by including the cost equations 4.11 

and 4.12 with additive stochastic error, which help permit to estimate parameters not 

included in the share equations: 

= tE E + u Equation 4.11 
A X i J 

or 

Inc = Yo + E Yjluvvj + -52 E PijlûWjlnw^. + u Equation 4.12 
1 2 J 

The error vector e = (u, ^e) is assumed to be multivariate normally 

distributed with mean 0, and non-singular variance-covariance matrix of 0, as estimated 

in Equation 4.14. The log of the likelihood function is given as 

T ^ 
Lib) = B - -^ln|Ô| + ^In a&sj/J Equation 4.13 

2 1=1 

where all the terms have the meanings defined in Chapter III. 
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As indicated above, for observed residuals (u, Ex, eg), the value of Q is estimated 

by 

Q = — 

û'û û'Sj^ U'cr 

û% A /  A  

Equation 4.14 

and 

Equation 4.15 

The values of the parameters which maximize Equation 4.13 over the sample values 

are chosen. As we know that the maximum likelihood estimators are consistent, 

asymptotically normally distributed and efficient, the variance-covariance matrix of the 

parameter estimates is estimated, as indicated by Equation 3.21, by 

V(b) = -
db^ 

Equation 4.16 

The right-hand side of Equation 4.16 is also known as the Cramer-Rao lower bound 

matrix, i.e., a minimum variance bound, the inverse of which is called information 

matrix. The analysis is done on the Zenith data processing system using Shazam 

software available in the Economics computing room. 

The Data 

The data used in this study are the quantities and prices of four input services and 

the output quantities of the large scale Pakistani Textile Industry from 1965 to 1989. The 

data is collected from the Census of Manufacturing Industries (CMI), the Pakistan 
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Statistical Division, the Pakistani Statistical Yearbook, the United Nations Statistical 

Yearbook, and many others mentioned in the bibliography. The total number of the 

establishments considered for the analysis are 470 and includes spinning, weaving and 

finishing of cotton, wool, silk, synthetic and narrow fabric textiles. Hand looms are not 

included in the analysis. 

Definition of the Factors Used 

Capital: Capital consists of all the fixed assets of the industry including land and 

building, plant and machinery and all other assets which are expected to have a 

production life of more than one year, and are used by the establishment for the 

manufacturing activity. The used value is determined at the end of the year after taking 

into account the value of addition and alteration, by deducting the value of sales and loss 

due to theft or fire and depreciation during the year. The land includes all land owned by 

the factory at its location in addition to the land on which factory buildings are situated. 

By buildings is meant all the structures at the factory location used directly or indirectly 

for the manufacturing process, goods and buildings used for welfare purposes of the 

workers. Residences and canteens are included. Plant and machinery include machines, 

tools and other mechanical equipment used in the manufacturing process. Other assets 

are vehicles, furniture, fixtures and durable spare parts. 

Labor: Labor includes production workers who are engaged in production work 

directly in manufacturing, assembling, packing, repairing, etc. Working supervisors and 

persons engaged for repair and maintenance are also included. Non-production 
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employees such as administrative and professional, white collar office employees and 

contract labor who are engaged through labor contract are not included. 

Energy: Fuel like coal, coke, charcoal, firewood, fuel oil, gas, electricity and other 

such items that are consumed in generating power are called energy. Fuel consumed in 

generation of electricity is included. 

Intermediate Materials: Raw material and semi-finished material, assembling parts, 

etc., which are physically incorporated in the products and by-products made, chemicals, 

lubricants and packing materials that are consumed in production, and spare parts which 

are charged to current operating expenses, are included in intermediate materials. Raw 

materials given to other establishments for manufacturing goods (semi-finished and 

finished) on behalf of the establishment are also included. The raw material supplied by 

others for manufacturing goods on their behalf, though, is excluded. 

Output: Output is the value of the production and it includes the value of the items 

produced or manufactured in the manufacturing process. In addition to the value of the 

individual items produced, data regarding value of by-products, wastes, electricity 

generated and sold (if any) and of fixed assets produced by the establishment for its own 

use (if any) are also outputs. Valuation of individual items of products and by-products 

is made at the ex-factory price which includes indirect taxes (excise duty, sales tax, etc.) 

and excludes transport cost outside the factory gate. 

From the data it can be seen that demand for energy and capital increased in line at a 

faster rate than labor, but the price of labor increased at a higher rate than capital and 

energy. The average productivity of labor increased from 4.35 in 1965 to 6.65 in 1989, 
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while the average productivity of capital decreased from 22.26 to 18.24 in the same 

period. The average productivity of energy is 25.29 in 1965 and 25.58 in 1989, which 

means that it remained virtually unchanged during this period. 

The inconsistency in input demands, seen in the data can be attributed to the 

following factors: 

1. own price elasticity effect (aj, 

2. substitution effect, one factor for the other (ffjj) 

3. non-homothetic return to scales, i.e., 

4. non-neutral technical change, i.e., 

The analysis in this study is focused on these factors. In the case of the generalized 

function, the above factors, and therefore, elasticities of substitution, returns to scales and 

technical change bias, can be determined simultaneously. 

The results of this study are presented below in detail in the following orders: 

(a) Selection of models of technology, 

(b) Selection among alternative functional forms, 

(c) Technical change and scales effects, 

(d) Estimated cost function, 

(e) Price and substitution elasticities, 

(f) Total factor productivity and return to scale, and 

(g) Effects of changes in input price, scale and time. 



www.manaraa.com

102 

Selected Models of Technology 

In the generalized function, various models of technology can be estimated. This 

estimation depends upon the nature of returns to scale and technological change. Three 

types of technical change will be assumed, i.e., no change, neutral and non-neutral 

technical change, and four types of returns to scale, i.e., constant, homogeneous and non-

homogeneous but homothetic and non-homothetic returns to scale. Therefore, there are 

12 different combinations possible. Table 4.1 shows the classification of the 12 different 

model combinations. 

Figure 4.1 represents the sample values of log of likelihood for the combinations 

given in Table 4.1. The general model with no restrictions is NH-NNE, in which there 

are 20 free parameters. The most restricted one is CRTS-N with eleven free parameters. 

Table 4.2 represents the results of Chi square test statistics. Part (a) is for testing 

various kinds of scales returns, while part (b) is for testing technical change effects under 

various model restrictions. From table (a) it is clear that whatever may be the type of the 

technical change, the hypothesis of homotheticity is totally rejected because the 1 % 

critical value of the test statistics are much smaller than the observed value. Even if 

homotheticity may be imposed mistakenly, the further restriction of homogeneity does not 

make any difference to the structure with the same level of confidence. The restriction of 

constant returns to scale, with given homotheticity, doesn't result in significant loss of fit, 

except in the case of the no change alternative. 



www.manaraa.com

103 

Table 4.1 Classification of models 

Technical Change 

Type of Returns No Change (N) Neutral Change 
(NE) 

Non-neutral 
Change (NNE) 

Constant returns to scales 
(CRTS) 

CRST-N CRST-NE CRTS-NNE 

Homogeneous nomothetic 
(HH) 

HH-N HH-NE HH-NNE 

Non-homogeneous 
Homothetic (NHH) 

NHH-N NHH-NE NHH-NNE 

Non-Homothetic (NH) NH-N NH-NE NH-NNE 
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I NH-NNE 1 
/j 44.64521 df=20 

© •'3 

df=17 NHH-NNE 
42.03711 

/ 

m 

df=16 
HH-NNE 
42.03506 

df=15 
CRTS-NNE 

41.91213 

NH=NE 
43.73369 

/ 

/ 
df=14 

NHH-NE 
41.92651 

X 

c ) 
df= = 13 
HH-NE 

41.92522 

df=17 

\ 

df=16 
NH-N 

43.73328 

df=13 
HH-N 

41.91853 

3 ) 

df=12 
CRTS-NE 
41.80557 

df=l l  
CRTS-N 
39.04629 

/-

df=12 
HH-N 

41.89763 

Figure 4.1 Maximum sample log of likelihood values (circle indicates the number of 
restrictions) 
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Table 4.2 Test statistics for selected models 

(a) Returns to scale 

Technical Change 

No Neutral Non-neutral 

Homotheticity 32.3210* 33,1839* 49,1732* 
(11,344) (11,344) (11,344) 

Homogeneity given 0,4988 0,0389 0,0499 
homotheticity (6,6349) (6.6349) (6,6349) 

CRTS given 54.8437* 2.8936 2,5889 
homotheticity (9.21) (9.21) (9.21) 

Technical change 

CRTS HH NHH NH 

Neutrality 2,2823 2.3868 2.6726 16,8809* 
(11.344) (11,344) (11,344) (11,344) 

No change 53.9858* 0,5698 0.1885 .00795 
given neutrality (6.6349) (6,6349) (6,6349) (6.6349) 

""shows that values are significant at 1 % level. Values in parenthesis are 1 % critical 
values of for 3 d.f, (as per Figure 4.1); the statistics are computed as 2(1^ - LJ 



www.manaraa.com

106 

From part (b) of the table it can be seen that neutrality of technical change is only 

rejected in the non-homothetic case. However, if neutrality is assumed, then further 

restriction of no technical cannot be rejected, except in the case of constant returns to 

scale. 

This shows that the Pakistani textile industry significantly exhibits non-homothetic 

returns to scale and non-neutral technical change. However, with the assumption of 

homotheticity and neutrality, we can't reject CRTS-NE and HH-N, the simplest models, 

when tested against the next simplest hypothesis. In these two models productivity 

growth is attributed to the technical progress in the first and to scale economies in the 

second model. As both models are nested in the HH-NE model (see Figure 4.1), the 

comparison shows no significant loss of fit for one degree of x^, and hence fails to decide 

whether the productivity growth is due to technological change or to scale economies. As 

the third (HH-NE) model is dominated by NH-NNE model, in the next section we will 

compare the NH-NNE model with the HH-NE, HH-N and CRTS-NE models, for proper 

evaluation of the results, because we believe that the returns to scale and technological 

development are non-homothetic and non-neutral. 

Functional Form Alternatives 

In Table 4.3 we have presented the sample maximum log likelihood values for 

different models. The table shows the values of LnL when X is held free to be estimated 

as X. The asymptotic t ratio defined in Chapter III are in parenthesis. In Table 4.4, the 

results of the hypothesis H^: X=i, when 1=1,2,0,-1,-2 verses H^: X?^i are presented for 

the models in Table 4.3. 
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Table 4.3 Sample maximum log of likelihood values for selected models 

(a) when X is free 

Models NH-NNE HHNE CRTS-NE HH-N 

X 0.65 -.89 -.78 -.87 

t (5.681) (-2.829) (-2.944) (-2.842) 

LnL 44.64521 41.9255 41.80557 41.89763 

(b) when X is fixed 

X Models NH-NNE HHNE CRTS-NE HH-N 

2 LnL 43.8363 41.60754 41.2385 41.5489 

1 44.5699 41.6261 41.4876 41.62512 

0 43.9898 41.7880 41.6854 41.7668 

-1 43.6158 41.9238 41.8024 41.8954 

-2 43.0086 41.3109 41.2510 41.1899 

NOTE: 't' is the asymptotic t ratio = parameter estimate/asymptotic standard error 

t^ is known as the Wald statistic and is distributed as with one degree of 
freedom under the null hypothesis. 
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In the case of the NH-NNE model, it is clear that X=1 cannot be rejected at the one 

percent level; recall that X=1 represents the Generalized Leontief function (see Chapter 

II). In the case of the other models, only X=0 (Translog) and X = -1, can't be rejected 

at the five percent level. 

From Table 4.3(a) we can see that Pakistani textiles can be represented by the 

generalized function when the value of X = 0.65. However, it can be represented by the 

values of X = -1, X=0 (Translog) and X=1 (Generalized Leontief) at the five percent 

level without any loss of fit, if homotheticity and neutrality are assumed (Table 4.3(b)). 

It is worth noting that X=1 gives the representation of the generalized form, which of 

course includes non-neutrality and non-homotheticity. 

Technological Change and Scale Economies 

Table 4.5 gives the maximum likelihood estimates of the parameters. Our accepted 

NH-NNE model is bifurcated into NH-NNE'A' and NH-NNE'B'. In the model 'A' we 

restrict the value of and T to 0, while in model 'B' we restrict X to 1 in addition to the 

restrictions of model A. For the case of the NH-NNE model, the values of 0k, &nd 

0E are significantly negative, which means that scale economies are possible with 

increased output. From Chapter III we know that when 0j < 0, the effect is share 

saving. Hence the scale effect in the Pakistani textile industry is share saving for labor, 

capital and energy. 

Similarly the technical change effects are share-using for capital and energy and 

share-saving for intermediate product, while approximately share-neutral for labor as is 

clear by Tk, te, tm and T^. However, this is not inconsistent with the finding, in general. 
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Table 4.4 Chi square test for alternative form in the case of selected models 

\ NH-NNE HH-NE CRTS-NE HH-N 

2 18.2345 5.8569* 12.3143 7.3123 

1 1.6735* 5.6784* 6.2893* 5.7812* 

0 12.7897 3.0410* 2.9478* 2.3173* 

-1 19.6781 .0379* 0.735* .0535* 

-2 31.3497 11.3767 12.0874 13.1347 

* indicates that at 1% level the null hypothesis cannot be rejected. 

Chi square critical value with one degree of freedom at 1% level = 6.6349 
Chi square critical value with one degree of freedom at 5% level = 3.841 
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Table 4.5 Maximum likelihood parameter estimates in selected models (asymptotic t 
ratios are in parentheses) 

NH-NNE NH-
NNE'A' 

NH-
NNE'B' 

HH-NE HH-N CRTS-NE 

^KK -0.55 -.028 -.076 .023 .017 .045 
(-.883) (-1.117) (-7.231) (2.253) (3.598) (6.081) 

^KL All .232 .312 -.005 -.003 0.12 
(1.404) (3.306) (4.493) (-2.000) (-3.775) (-1.776) 

PKE .124 .064 .09 -.003 -.005 -0.10 
(1.342) (2.878) (5.677) (-2.160) (-2.316) (-3.419) 

I^KM -.136 -.076 -.050 -0.23 .017 0.047 
(-1.1420 (-1.658) (-.828) (-2.134) (-3.883) (-3.463) 

PLL .523 .289 .292 .091 .066 .163 
(1.454) (3.300) (2.835) (2.551) (9.504) (2.990) 

^LE .302 .176 .223 -.012 -.008 -.017 
(1.460) (3.692) (5.059) (-2.333) (-6.264) (-2.169) 

PLM -.631 -.343 -.319 -.141 -.103 -.249 
(-1.461) (-3.363) (-2.708) (-2.491) (-14.8) (-2.469) 

PEE -.112 -.061 -.093 .020 .013 .035 
(-1.302) (-2.556) (-5.587) (2.147) (3.95) (3.60) 

PEM -0.65 -.040 -.017 -.016 -.011 -.031 
(-.975) (-1.259) (-.449) (-1.720) (-2.741) (-2.21) 

PMM 0.912 .501 .502 .012 .0062 .025 
(1.487) (4.020) (3.596) (.404) (.349) (.63) 

a .601 .824 .823 .867 .899 1.00 
(2.236) (78.63) (79.33) (11.05) (102.33) 

T .001 0.0 0.0 -.002 0.0 -.0065 
(.832) (-.742) (-16.74) 

e 0.34 0.0 0.0 0.0 0.0 0.0 
(.724) 



www.manaraa.com

of labor saving and capital and energy using in manufacturing by the Paîcistani Industry 

(Khan 1987). 

The value of 6 (Table 4.5) is not significant and is positive, which indicates that a 

minimum point of the average cost curve is reached with increase in output. Also, the 

value of T (.001) is not significantly different than zero. In the absence of bias in 

technical change r, t represents the neutral rate of total cost diminution. Hence our NH-

NNE'A' model is estimated with T=0=0 and is represented in Table 4.5. The model 

NH-NNE'B' is also given in the table and estimated with 0=t=O and X=l. In both 

these models we can see from the table that these restrictions do not result in any 

significant loss of fit. The test stastic is .9526 and 1.8354 when both models are 

compared with the NH-NNE model. The critical value at the 1 % level with 2 degrees of 

freedom is 9.21. Hence our conclusion concerning scaler effects and technological 

change remain the same. However, it looks useful that the estimate of the parameter 

estimates are more precise than in the general model, because the standard errors are 

small. 

In the case of the CRTS-NE model, all the growth of productivity is attributed to the 

neutral technical change effect. The estimated rate of cost diminution of .65% is 

significantly different from zero because the't' ratio is 16.74. For the HH-N model, all 

the increase in productivity is attributed to economies of scale. The scale parameter a is 

significantly different from 1 because the 't' ratio for Hg: « = 1 is -22.90. The estimate 

of «=0.899 implies that the estimated degree of homogeneity of the underlying 
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production function (l/a) in input quantities is 1/0.899 = 1.112, i.e., a contribution of 

about 11% to the growth attributable to scale economies. 

The values, which are all above .97, reflect that the model explains the data quite 

well. 

Properties of Estimated Cost Function 

Based on our maintained hypothesis of linear homogeneity in prices and symmetry of 

substitution effect, the estimated cost function exhibits positive and monotonie behavior in 

prices. This all is indicated by the positive values of output elasticities of cost at every 

point of observation. 

For strict concavity of the cost function, the matrix of Allen partial elasticities 

should be negative definite. This condition is satisfied for the model. This has been 

checked by showing that the negative of the matrix is positive definite, as verified by 

criterion (3b) on p. 318 of Graybill (1969). Also, because of the linear homogeneity, the 

matrix is symmetric. 

The concavity violation in the general representation of models NH-NNE'A' and the 

NH-NNE'B' are not significant in the first half of the sample. The estimates of 

(0.01 to .03) in the restrictive models (CRTS-NE, HH-N, HHNE) in which concavity is 

satisfied, is much smaller than those in the NH-NNE'A' and NH-NNE'B' models (.5). 

For sensitivity analysis, a value of |8mm=0-4 is used, which does not result in any loss of 

fit at the 1% level (x^=-7 only). Also, in the last half of the sample the concavity 

requirements are satisfied. 
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Substitution and Price Elasticities 

Table 4.5 shows the Allen partial elasticities of substitution based on likelihood 

parameter estimates. In Table 4.6, the Allen partial elasticities of substitution are given, 

for the mid point of the data (1977), in our sample. This is done to see what is 

happening inside the data. 

It is clear from the table that elasticity of substitution of capital with respect to 

energy, i.e., Cke» varies from -1.97 to -2.578. As the elasticity is negative, it shows that 

energy resource is acting as a complementary resource with capital. This finding is not 

inconsistent with the results presented by Khan, A. (1987). On the other hand there are 

reasonable possibilities of substitution between capital and labor, labor and energy, and 

material and energy, in all of the selected models. Their ranges are .98 to 1.72 for a^L, 

.53 to 1.89 for (Tle and .34 to .89 for (Tem- In the first one-third of the sample, the 

complementarity nature holds between <^le and (Temj but later on, it changes to 

substitutability of the respective input factors. 

Table 4.7 represents the cross price elasticities and own price elasticities for four 

factor inputs. The own price elasticities for L, K, M, and E under the model NH-

NNE'A' are -.153, -.329, -.0019 and -.61. It looks like energy demand is most sensitive 

to its own price. 

From the cross price elasticities between labor and energy and labor and capital, it is 

clear that an increase in the price of energy or capital will increase the demand for labor. 

The respective elasticities are = 084 and = 0.102. On the other hand an 

increase in the price of labor will increase the demand for energy and capital at 
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Table 4.6 Allen partial elasticities of substitution in Pakistani textiles for year 1977 
in the case of the selected models 

NH-NNE'A' NH-NNE'B' HH-NE HH-N CRTS-NE 

» 

""KK -6.351 -6.634 -8.679 -9.173 -8.345 

1.692 1.723 1.111 1.123 0.989 

-2.379 -2.358 -2.410 -2.578 -1.975 

.0058 .076 .513 .539 .468 

-.548 -.613 -1.592 1.678 -1.599 

<^LE 1.893 1.349 0.601 0.536 0.563 

O'LM -.0519 .023 .603 .589 .597 

O'ER -13.270 -11.37 -11.97 -12.92 -11.324 

""em .349 .419 .829 .891 .761 

-.0025 -.0438 -.375 -.389 -.367 

*o„ = 

I
I
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Table 4.7 . Input demand price elasticities in Pakistani textiles in selected models 
for 1977 

NH-NNE'A' 
(6=7=0) 

NH-NNE'B' 
(T = d=0, X=l) 

HH-NE HH-N CRTS-NE 

^KK -.329 -.382 -.435 -.493 -.419 

^KL .479 .453 .258 .269 .272 

^KE -.112 -.110 -.109 -.116 -.097 

^KM .004 .053 .312 .35 .29 

^LK .102 .097 .0535 .0547 .054 

^LL -.153 -.169 -.449 -.457 -.45 

^LE .084 .063 .023 .024 .025 

^LM -.031 .012 .365 .369 .368 

^EK -.135 -.143 -.132 -.152 -.110 

^EL .533 .394 .150 .146 .149 

^EE -.610 -.52 -.54 -.565 -.497 

^EM .217 .263 .522 .567 .459 

^MK .00032 .0042 .021 .027 .024 

^ML -.014 .0058 .159 .164 .165 

^ME .016 0.189 .0359 .042 .319 

^MM -.0019 -.0291 -.227 -.229 -.222 
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substantial higher rates, because e^L = 0.533 and Ckl = .479. Also the complementarity 

of capital and energy is obvious as shown by their values of Cke = --112 and = -

0.135. Similar results can be obtained in the other selected models. 

Table 4.8 gives the various elasticities estimates for 1989, based on our 

NH-NNE'A' model. In this case energy-capital complementarity is obvious because CTke 

is equal -5.465. Also, from cross price elasticity estimates of capital and energy, e^E and 

e^K indicate that if the price of energy or capital is increased by 1 %, the quantity 

demanded of the other inputs will fall by 0.265%. The results for other elasticities are 

similar to those obtained above. 

Total Factor Productivity and Returns to Scale 

Table 4.9 gives the scale effects and cost diminution in selected models. These 

results are based on the equation discussed in Chapter II. In the model NH-NNE'A', 

there are significant scale economies and estimated growth of output is about 11%. The 

growth attributed to scale economies in the case of the HH-NE and HH-N models are 10 

and 12% respectively. We reject the hypothesis of constant returns to scale decisively for 

these models because the asymptotic t ratios are 11.13 and 17.62. This result is in close 

agreement with the results obtained by Kemmall (1978). 

Total factor productivity growth, i.e., technological progress, has contributed very 

little to the growth of output. The rates of growth for all selected model presented in 

Table 4.9 are .031%, 0.2% and 0.752%. This estimate is not significantly different from 

zero for the NH-NNE'A' model, but for the CRTS-NE model, 0.752% growth in TFP is 

significantly different from zero, as is indicated by the small standard error. The rate of 
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Table 4.8 Substitution and price elasticities in Pakistani textiles 1989 based in the 
NH-NNE'A' model 

Allen Partial Elasticities of 
Substitution Price Elasticities 

-3.752 ^KK -0.181 ^MK 0.012 

^KL 0.890 ^KL 0.259 ^ML 0.0265 

-5.465 ^KE -0.256 ^ME 0.0295 

^KM 0.281 ^KM 0.169 ^MM -0.069 

<^LL -0.531 ^LK 0.045 

^LE 0.379 ^LL -0.157 

O'LM 0.0859 ^LE 0.0649 

(^EE -11.897 ^LM 0.0492 

O'EM 0.649 ^EK -0.259 

""MM -0.119 ^EL 

^EE 

^EM 

0.417 

-0.556 

0.395 
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Table 4.9 Returns to scale, cost diminution and TFP in selected models: 1989 for 
Pakistani textiles 

Parameter NH-NNE'A' HH-NE HH-N CRTS-NE 

Returns to Scale 1.1183 1.102 1.1217 1.000 
(e') (0.02036)* (0.10378) (.01239) 

Rate of Total Cost 0.00028 0.00189 0 0.00752 
Diminution (d) (0.00054) (0.00350) (.00058) 

Total Factor 
Productivity 0.000313 0.00208 0 0.00752 

TFP=€*d (0.00062) (.00301) (.000352) 

^Number in the parenthesis is the asymptotic standard error. It is calculated by the 
first order approximation method discussed in Klein (1953, p. 278). 
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technical progress presented by Khan (1987) is 3.7% per year for all manufacturing 

industries of Pakistan (textile incluse). This shows that textile's share of technical 

progress will be near one percent per year. Hence there is not much discrepancy in our 

result, when compared to Khan. 

With the passage of time, the contribution of scale economies and technical change 

to growth become more complex. As our data is based on aggregate time series, the 

results should be interpreted and handled very carefully. Also, if technical progress is 

dependent upon 'learning by doing,' then as discussed before, the contribution of scale 

economies to the output growth will increase with time. 

Residual Measure of Total Factor Productivity 

The residual measure of TFP is defined as output divided by the index of all inputs. 

The total factor productivity and rate of technical change are as discussed in Chapter II. 

Thus for the function y=f(xj, the total factor productivity is given as 

TFP = yjx, x= index of inputs x. Equation 4.17 

Equation 4.17 is only valid when (a) the restriction of CRTS is implied, (b) the 

inputs have ben properly measured (real values), (c) there is no mis-specification of 

production function, (d) TFP is linearly homogeneous and (e) the technical change is 

Hicks neutral. 

Let us assume that the total factor productivity can be specified properly by 

TFP=e^\ the function that gives a neutral rate of technical change. Equation 4.18 
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Differentiating Equation 4.17 logarithmically w.r.t. time't' we get 

d\x\.(TFP) _ dlny _ dlnx _ Equation 4.19 
dt dt dt 

Divide Equation 4.19 by Equation 4.18 we get 

—— - y/y ~ x/x = r, where dot denotes the derivative. Equation 4.20 
TFP 

Here x = aggregate of the inputs (K, L, M, E), which can be obtained as a divisia 

Index. (Solow (1957), Denison (1974)). However, we here take the following 

alternative approach, with results given in p. 123. 

From the cost function we can calculate TFP as follows. Let the cost function be 

written in terms of aggregate input of prices as 

c = a(t)flyvjpwjjwi^,w^ Equation 4.21 

In a similar manner as in Equation 4.19 we have 

à _ w c 

a w e  

where 

à Equation 4.22 
— = TFP (jCost decrease due to technical change) 

a 

and, 

w = aggregate of input. 

If we assume a translog cost function we can calculate 'w'by the Tomquist price index 

as explained by Chambers R.G. (1990, p. 235). 
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In the case of a competition assumption, the output price equals the unit cost and 

consequently the TFP can be measured as 

a ^ w _ g 

a w q' 
Equation 4.23 

where 

q = output price index 

For our model, which is based on aggregate data, we use the aggregator function 

index introduced by Diewert (1976), The aggregator price index is given by 

w = < 
^i,t-

i 

w,, U/2 

. ' J 
1/2 

i/x 

Equation 4.24 

where the S/s are the shares. 

Equation 4.24 can be simplified to the Tomquist Index by the Box-Cox 

transformation, as 

EVi 
I I w* = 

w, 

U S ,  

or 

w^-1 1 

Wu 

I 

W, <.<-1 

X/2 

- 1  

1 
2 

- E",, 
i 

W, U,t-l 
\A/2 

- 1  

X I 2  

w, X/2 
Equation 4.25 

using L'Hospitals' rule and taking the limit in Equation 4.25 as X=K), 
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- • 
= T. -(S„ + Su .)ln—• Equadon 4.26 

1 2 ^ "  

To evaluate the Equation 4.24 we need an estimate In Table 4,3 this estimate 

X = -0.78 in our CRTS-NE model. For this value of X, the residual measures of TFP 

obtained are presented in Table 4.10 along with the parametric measure for the sake of 

comparison. 

From Table 4.10, one can see that all the residual measures of total factor 

productivity are nearly identical, except in the competitive cost case, where the 

discrepancy can be attributed to the difference between the unit cost and output price. 

Similarly the residual measure of TFP are nearly close enough to the parametric 

measures for our CRTS models, because both types of measure of TFP are based on the 

assumption of constant returns to scale and neutral and homogeneous technical change. 

The differences between the estimates can be attributed to the inefficiency of the residual 

measure to account for the cost minimizing behavior. In short, both the CRTS 

parametric estimates and the residual measure attribute the contribution of scale economy 

to total factor productivity. 

Comparative Statics 

Now we consider some sensitivity analysis regarding the effect of technical change 

and scale of production on parameters like input price, output quantity and time. 
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Table 4.10 Mean and standard deviation of total factor productivity of Pakistani textile 
industry (1965-1989) 

I. Residual Measure Mean Standard 
Deviation 

(a) Tomquist Index (\=0) (Equation 4.26) 

(i) From Production Function (TFP/TFP) 0.006212 0.01134 

(ii) From Cost Function (-à/a) 0.006132 0.01128 

(iii) From Competitive Cost (â/a) 0.006518 0.01326 

(b) Aggregator Function Index (Equation 4.24, 
X = -0.78) 

(i) From Production 0.006189 0.01232 

(ii) From cost 0.006151 0.01192 

(iii) From Competitive Cost 0.006525 0.01319 

IL Parametric Measure 

(i) CRTS-NE 0.00752 0 

(ii) CRTS-NNE 0.00782 .00013 

(iii) HH-NE 0.00208 0 

(iv) NH-NNE'A' 0.000313 0.00016 
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Table 4.11 presents the change in respective share as a function of the change of each of 

the factor inputs, output quantity and time. 

The last row of Table 4.11 shows that the signs of the partials derivatives are 

negative for labor and material share, while for capital and energy they are positive. 

This means that technological progress tends to increase the capital and energy share, 

while the shares of labor and material are decreased. This reflects that technical change 

is labor and materials saving and capital and energy using. From the second-to-last row 

of the table it can be seen that the increase in output y will decrease the share of all 

inputs but material. This shows that the economies of scale are not distributed evenly 

among all inputs. 

The 4x4 matrix depicted in Table 4.11 is a symmetric matrix. The cross price 

effect on the shares is also symmetric. The diagonal elements of the matrix are all 

positive and represent the own price elasticity of the respective inputs. As elasticity of 

inputs is positive, any increase in input price will increase the value of the respective 

share. On the other hand, due to cross price elasticity, it will decrease the value of other 

shares in the case of capital. A similar effect can be seen for material input. This shows 

that the price elasticity of substitution between capital and other inputs or between 

material and other inputs is less than unity. For energy and labor, the growth in one of 

the shares will increase the other share, while lowering the share of the remaining two. 

This is because the price elasticity of substitution between labor and energy is more than 

unity. 
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Table 4.11 Effect of change in output, time and input prices on estimated share in the 
NH-NNE'A' model of Pakistani textiles 1965-1989 

dS^ dS, 05^ 55M 

dlnw^ dlnw. dlnw. dlnw. 

i=K 0.036 -0.0021 -0.015 -0.023 

i=L -.0021 0.165 0.0049 -0.163 

i=E -0.015 0.0049 0.0189 -0.011 

i=M -0.023 -0.163 -0.011 0.1745 

Wi=y -.041 -0.043 -0.0283 0.114 

W; = t 0.00125 -0.00011 0.00071 -0.0017 
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Table 4.12 presents the effects of input price changes on cost diminution, returns to 

scale and total factor productivity. We can see that an increase in the price of respective 

input will increase the non-homothetic returns to scale of these inputs de'/dlnw-, > 0). 

An increase in the price of capital or energy will decrease the cost diminution rate and 

rate of total factor productivity. This is not true for labor and material. 

The changes in average factors productivity due to variation in input prices, output 

and time is shown in Table 4.13. It shows that an increase in capital or energy price will 

raise the average productivities of both inputs while decreasing the other two. This is not 

true for the labor or material input average productivities. The similarity between the 

capital and energy inputs shows the complementarity of the two. 

The effect of scale of production shows a positive response in all inputs except 

material. These responses are considerable for capital and energy, due to their small 

shares and larger scale economies. The technical change effect shows that the average 

productivities of capital and energy are decreasing, while for labor and material they are 

increasing, indicating that the former is energy and capital using and latter is labor and 

material saving responses to technical progress. 
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Table 4.12 Effects of input price changes on rate of total cost diminution, returns to 
scale and total factor productivity, Pakistani textiles NH-NNE'A' 1989 

dd ôe* dÇTFP 
dlnw. dlnw. 31nw. 

i=K -0.00125 0.603 -0.0014 

i=L 0.00011 0.0687 0.00011 

i=E -0.00071 0.0429 -0.00079 

i=M 0.0017 0.1734 0.0022 

Table 4.13 Effects of input prices, output quantity and time on average productivity+ 

d]n.(ylK) ainCy/L) dhxÇy/E) ôln(y/i 
dlnw. 0/nWj dlnw. dlnw 

i=K 0.169 

o
 

o
 0.249 -0.012 

i=L -0.257 0.151 -0.425 -0.025 

i=E 0.249 -0.059 0.551 -0.030 

i=M -.168 -0.49 -0.389 0.071 

II 1.021 0.34 0.799 -0.0049 

Wi = t -0.0249 0.00057 -0.0139 0.0032 

^Estimation is based on the NH-NNE'A' model. 
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CHAPTER V. SUMMARY AND CONCLUDING REMARKS 

In this chapter the summary of the main results obtained in this study are 

presented. 

The main purpose of this study has been to develop an appropriate functional 

relationship for the Pakistani textile industry to analyze its performance and productivity. 

Our main hypothesis is that the Pakistani textile industry can be represented by a twice 

derivable, homogeneous, concave and monotonie production function or by its dual cost 

function. All this is based on a flexible functional form, Non-homothetic returns to scale 

and non-neutral technical change in production technology can be incorporated to identify 

simultaneously the substitution elasticities, scale economies and bias of technical change. 

Chapter II is devoted to investigate the model econometrically. The concept of 

duality among the production function and cost function is utilized to model the system in 

forms of its cost function. The generalized Box-Cox function with transformation 

parameter X is modified and incorporated into the production (cost) function. The 

different values of X give rise to different functional forms. Incorporation of non-

homothetic scale economies and non-neutral technical change in the model allow us to 

consider twelve different forms of the model. The share-using or share-saving bias can 

be interpreted conveniently by homotheticity and neutrality parameters. The various 

comparative static expression, like estimated shares (Sj), returns to scale, total factor 

productivity and average productivity, the changes in input price, scale and time are 

derived and presented. 
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IV. This program uses the Fletcher Algorithm for obtaining the maximum likelihood 

estimates of the parameters. 

The data was collected through various issues of the Census of Manufacturing 

Industries, Pakistan Statistical year books and the Economic Survey of Pakistan. The 

important point in the data sample is that the demand for energy and capital grew at a 

faster rate than that of labor, while price of labor (wage rate) increased more than that of 

capital and energy. The goal of this study is to investigate and explain these phenomena, 

to see whether or not we can attribute them to particular economic entities, i.e., effect of 

own and cross price elasticity, scale and technical change effect, etc. 

It is not possible to do this job of attribution for every possible effect and its 

cause, without proper model specification. Thus we specify twelve different models 

based on the nature of technical change and types of returns to scale, as presented in 

Table 4.1. The concept of homotheticity of production function and neutrality of 

technical change is clearly rejected, irrespective of the nature of the technical change. 

Our main accepted hypothesis is that Pakistani textiles can be characterized by non-

homothetic production function and non-neutral technical change. It appears from Table 

4.2 that if the restriction of homotheticity is mistakenly imposed (Type II error), we 

cannot reject models involving constant returns to scale, neutrality, homotheticity 

(including homogeneity), and zero technical change. Such models include the CRTS-NE 

model, where all the growth in productivity is attributed to technical change, and the 

HH-N model, where it is attributed to economies of scale only. 
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To discriminate among alternatives flexible functional forms, the role of X (the 

Box-Cox transformation parameter) is significant. For different values of X we have 

different flexible functional forms as discussed in Chapter III. Among the different 

models, the Translog (X=l) the GL(X=1) and X=-l models are the models which do not 

result in any loss of fit at the 1 % level. The values of X estimated freely as X for the 

alternative models are different from these values, as shown in Table 4.3. 

In the case of the NH-NNE (accepted) model it is clear that technical change in 

Pakistani textiles is capital and energy using, while the estimated neutrality parameters 

indicate that technical change is labor and material saving. This result is in line with the 

study presented by Khan (1987). Our model shows the scale economies to be distributed 

unevenly among the factors of production, with the largest value for labor. We further 

modified the NH-NNE model to NH-NNE'A' in which we considered the slope of the 

average cost curve to be zero (.". min cost point is reached, and at that point cost rate is 

also neutral, i.e., T=B=0). The Chi square test statistics show no significant loss of fit 

under these restrictions. Another version of the NH-NNE model, NH-NNE'B', is tested 

and compared without any significant difference. However, the simple models 

NH-NNE'A' and NH-NNE'B' show more precise parameter estimates, as indicated by 

smaller standard errors. Our subsequent results are based on this model (i.e., 

NH-NNE'A'). 

In the case of the cost function, linear homogeneity in prices and reciprocity 

(symmetry) are the assumptions we make. The monotonicity of the cost function is 

obvious from the sample. The concavity/convexity condition of the production/cost 
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function is satisfied in the last half part of the sample in the case of the NH-NNE'A' 

model, while for the other selected models it is satisfied over the entire sample. 

The resulting substitution elasticity estimates show that capital and energy are 

mutually complementary, while each one of them is substitutable for labor. The price 

elasticity estimates shows that energy and capital are more own price inelastic than labor. 

The cross price elasticities estimates in 1977 for NH-NNE'A' show that if price of labor 

is increased by 1%, the quantity demanded of energy and capital services will be 

increased by .417% and .259% respectively (Table 4.8). 

The effects of scale and technical change in the case of the NH-NNE'A' model 

reveal that returns to scales are 1.12 and 1.1 for NH-NNE'A' and HH-N and HH-NE 

respectively. The returns to scale for NH-NNE'A' is significantly different from unity 

(CTRS), while the others are not significant as compared to the CTRS model. 

The growth rate in NH-NNE'A' is only ,03%, which is not very impressive as 

compared to growth in the case of CTRS-NE, which is 0.75% and is consistent with 

Khan's (1987) disembodied growth of technical change in the whole manufacturing sector 

of Pakistani Industries. 

Comparison of parametric and residual measures of total factor productivity 

indicates that they are approximately the same when the restriction of constant returns to 

scale is imposed. Otherwise there is wide difference in both types of measure. 

The effect of changes in input price, output quantity and time with respect to scale 

economies and total factor productivity are considered. The response is positive for scale 

economies, while it is negative for total factor productivity. 
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Lastly it is understood that Pakistani large scale textile industry can better be 

represented by NH-NNE model for economies of scale, but for technical change it is 

uncertain. As technical change is a complicated phenomenon and needs extensive 

modeling and research, we suggest that this can be a topic of further research. This 

research should be attacked both by engineering modeling approaches as well as by 

economics,. 
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